
THE STRESS 
ANALYSIS 
OF CRACKS 
HANDBOOK 
THIRD EDITION 

Hiroshi Tada 
Washington University 

Paul C. Paris 
Washington University 

and 
George R. Irwin 
University of Maryland 

ASME Press • • New York • • 2000 



Copyright © 2000 by The American Society of Mechanical Engineers 
Three Park Avenue, New York, NY 10016 

Library of Congress Cataloging-in-Publication Data 

Tada, Hiroshi, 1939-
The Stress Analysis of Cracks Handbook I Hiroshi Tada, Paul C. Paris, and George R. Irwin; 3'd 

ed. 
p. em. 
ISBN 0-7918-0153-5 
1. Fracture Mechanics. 2. Strains and Stresses. 
I. Paris, P. C. (Paul Croce), 1930-
ll. Irwin, George Rankin, 1907-1998 
m. Title 
TA409.T33 2000 
620.1' 126- dc21 

00-020557 
CIP 

All rights reserved. Printed in the United States of America. Except as permitted under the United 
States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form 
or by any means, or stored in a database or retrieval system, without the prior written permission of 
the publisher. 

INFORMATION CONTAINED IN THIS WORK HAS BEEN OBTAINED BY THE AMERICAN 
SOCIETY OF MECHANICAL ENGINEERS FROM SOURCES BELIEVED TO BE RELIABLE. 
HOWEVER, NEITHER ASME NOR ITS AUTHORS OR EDITORS GUARANTEE THE ACCURACY 
OR COMPLETENESS OF ANY INFORMATION PUBLISHED IN THIS WORK. NEITHER ASME 
NOR ITS AUTHORS AND EDITORS SHALL BE RESPONSIBLE FOR ANY ERRORS, OMISSIONS, 
OR DAMAGES ARISING OUT OF THE USE OF THIS INFORMATION. THE WORK IS 
PUBLISHED WITH THE UNDERSTANDING THAT ASME AND ITS AUTHORS AND EDITORS 
ARE SUPPLYING INFORMATION BUT A1RE NOT A TTEMPHNG TO RENDER ENGINEERING OR 
OTHER PROFESSIONAL SERVICES. IF SUCH ENGINEERING OR PROFESSIONAL SERVICES 
ARE REQUIRED, THE ASSISTANCE OF AN APPROPRIATE PROFESSIONAL SHOULD BE 
SOUGHT. 

ASME shali not be responsible for statements or opinions advanced in papers or ... printed in its 
publications (B7.1.3). Statement from the Bylaws. 
For authorization to photocopy material for internal or personal use under those circumstances not 
falling within the fair use provisions of the Copyright Act, contact the Copyright Clearance Center 
(CCC), 222 Rosewood Drive, Danvers, MA 0!923; tel: 978-750-8400; e-mail: www.copyright.com. 



DEDICATION 

On 9 October 1998, Dr. George R. Irwin passed away. We, the surviving authors of this book, have lost a 
great friend and colleague, who deservingly has been called "the Father ofFracture Mechanics." He was our 
inspiration in continuing to develop new items for the second and third editions of this book. Therefore, we 
feel compelled to dedicate our effort on this third edition to him, as well as our effort on previous editions. We 
are proud of the privilage of having worked closely with him. 

Paul C. Paris and Hiroshi Tada, May 2000 

iii 





TABLE OF CONTENTS 

List of Symbols 
Foreword by G. R. Irwin 
Preface - Third Edition 
Preface - Second Edition 
Preface - First Edition 
Acknowledgments to the First Edition 

Part I 
Introductory Information 

Introduction 
Crack-Tip Stress Fields for Linear-Elastic Bodies 
Alternate Expressions for Crack-Tip Elastic Fields 
Slender Notches and Stress Concentrations from Stress Intensity Factors 
Energy Rate Analysis of Crack Extension 
Relationships between g and K 
Superposition of g and K Results 
Meaning of Plane Stress and Plane Strain for Fracture Mechanics Purposes 
Effects of Small Scale Yielding on Linear-Elastic Fracture Mechanics 
Introduction to Stress Function Methods 
Additivity of Crack Stress Fields and K Values 
Boundary Collocation Method 
Successive Boundary Stress Correction Method 
K Estimates from Finite Element Methods 
Additional Remarks for Part I 

A. Unified Formulation for In-Plane Two-Dimensional Problems 
B. On Completeness of Westergaard Single-Function Method for Analysis 

of Cracks 
C. Effect of Surface Interference of Partly Closed Cracks 

Part II 
Stress Analysis Results for Common Test Specimen Configurations 

The Center Cracked Test Specimen 
The Double Edge Notch Test Specimen 
The Single Edge Notch Test Specimen 
The Pure Bending Specimen 
The Three-Point Bend Test Specimen 
The Compact Tension Test Specimen 
The Round (Disk-Shaped) Compact Specimen 
The Arc-Shaped (C-Shaped) Specimen 
Other Common Specimen Configurations 
Electrical Potential Calibration 

v 

viii 
xvi 

xvii 
xviii 

xix 
XX 

1 
2(1.1) 

2(1.1-1.3a) 
6(1.3b-1.3c) 

8(1.4-1.6) 
11(1.6-1.7) 
12(1.7-1.8) 

13(1.8) 
14(1.9-1.10) 

16(1.11) 
17(1.12-1.17) 
22(1.17-1.18) 
23(1.18-1.19) 
24(1.19-1.20) 
25(1.20-1.21) 

26(1.21) 
26(1.21-1.22) 

27(1.22-1.26) 
31(1.26-1.33) 

39 
40(2.l-2.5a) 
46(2.6-2.9a) 

52(2.1 0-2.12) 
55(2.13-2.15) 
58(2.16-2.18) 
61(2.19-2.21) 

64(2.22) 
65(2.23) 

66(2.24-2.3 7) 
80(2.38) 



vi Table of Contents 

Part III 
Two-Dimensional Stress Solutions for Various Configurations with Cracks 

A. Cracks Along a Single Line 
A Semi-Infinite Crack in an Infinite Plane 
Two (Opposing) Semi-Infinite Cracks in an Infinite Plane 
A Finite Crack in an Infinite Plane 
Multiple Cracks in an Infinite Plane 
A Periodic Array of Cracks in an Infinite Plane 
An Edge Crack in a Semi-Infinite Plane 
A Semi-Infinite Crack (Leaving a Finite Ligament) in a Semi-Infmite Plane 
Finite Crack(s) in a Semi-Infinite Plane 
An Internal and Edge Crack(s) in a Finite Width Strip or in a Rectangular 

and Circular Regions 
B. Parallel Cracks 
Parallel Semi-Infinite Cracks in an Infinite Plane 
Opposing Parallel Semi-Infinite Cracks in an Infinite Plane 
Finite Parallel Cracks in an Infinite Plane 
Parallel Edge Cracks in a Semi-Infinite Plane 
A Semi-Infinite Crack Parallel to Edges of an Infinite Strip 
A Finite Crack Parallel to Edges of an Infinite Strip 
Transverse Crack(s) in an lnfmite or a Finite Strip 
C. Cracks and Holes or Notches 
Crack(s) Emanating from a Hole or a Notch in an Infinite, a Semi-lnfmite 

or a Finite Plane 
Crack( s) at a Juncture of a Strip and a Semi-Infinite Plane 
A Finite Crack Near Hole(s) in an Infinite Plane 
D. Curved, Angled, Branched, or Radiating Cracks 
Curved, Angled, Branched, or Radiating Crack(s) in an Infinite Plane 
E. Cracks in Reinforced Plates 
Finite Crack(s) in an Infmite Plane with Reinforced Regions 

Part IV 
Three-Dimensional Cracked Configurations 

A Semi-Infinite Crack in an Infinite Body 
An Embedded Circular Crack in an Infinite Body 
An External Circular Crack (a Circular Net Section) or a Circular Ring 

(an Annular) Crack in an Infinite Body 
An Elliptical Crack or Net Section and a Parabolic Crack in an Infinite Body 
An External Circular Crack in a Round Bar 
An Internal Circular Crack in a Round Bar 
An Internal Circumferential Crack in a Thick-Walled Cylinder 
An External Circumferential Crack in a Thick-Walled Cylinder 
A Half-Circular Surface Crack in a Semi-Infinite Body 
A Quarter-Circular Comer Crack in a Quarter-Infinite Body 

PartV 
Crack(s) in a Rod or a Plate by Energy Rate Analysis 

Bending, Shearing, and Tension/Compression 

81 

82 (3.1-3.12) 
96 (4.1-4.16a) 

124 (5.1-5.22a) 
165 (6.1-6.5) 

170 (7.1-7.11) 
193 (8.1-8.18) 
219 (9.1-9.6a) 

227 (10.1-10.4) 

232 (11.1-11.15) 

247 (12.1-12.6) 
253 (13.1-13.3) 
256 (14.1-14.7) 
264 (15.1-15.2) 
266 (16.1-16.6) 

272 (17.1-17.13) 
285 (18.1-18.4) 

289 (19.1-19.17) 
306 (19.18-19.19) 

308 (20.1-20.6) 

314 (21.1-21.17) 

331 (22.1-22.2) 

333 

334 (23.1-23.8) 
342 (24.1-24.26) 

369 (25.1-25.10) 
384 (26.1-26.6) 
390 (27.1-27.3) 
396 (27.4-27.6) 

402 (27.7-27.8a) 
406 (27.9-27.10a) 

410 (28.1-28.2) 
412 (28.3-28.5) 

415 

416 (29.1-29.15) 



Table of Contents vii 

Part VI 
Strip Yield Model Solutions 

Introduction to Strip Yield Model Analysis 
Additional Notes on Strip Yield Models 
Two-Dimensional Problems of Strip Yielding from Crack(s) 
Two-Dimensional Problems of Strip Yielding from a Hole with or without Crack(s) 
Three-Dimensional Strip Yielding Solutions 

Part VII 
Crack(s) in a Shell 

A Circumferential Crack in a Cylindrical Shell 
Multiple Circumferential Cracks in a Cylindrical Shell 
A Longitudinal Crack in a Cylindrical Shell 
A Crack in a Spherical Shell 

Appendices 
A. Compliance Calibration Methods 
B. A Method for Computing Certain Displacements Relevant to Crack Problems 
C. The Weight Function Method for Determining Stress Intensity Factors 
D. Anisotropic Linear-Elastic Crack-Tip Stress Fields 
E. Stress Intensity Factors for Cracks in a Plate Subjected to Pinching Loads 
F. Cracks in Residual Stress Fields 
G. Westergaard Stress Functions for Dislocations and Cracks 
H. The Plastic Zone Instability Concept Applied to Analysis 

of Pressure Vessel Failure 
I. Approximations and Engineering Estimates of Stress Intensity Factors 
J. Rice's J-Integral as an Analytical Tool in Stress Analysis 
K. Elasto-Plastic Pure Shear Stress-Strain Analysis (Mode Ill) 
L. Table of Complete Elliptic Integrals 
M. Table and Properties of Gamma Function 

References 
Reference Index 
Subject Index 
Free Software (SmartCrack-Lite) 
Software Guide 

431 

432 (30.1-30.2) 
433 (30.2) 

434 (30.3-30.25) 
457 (31.1-31.5) 
462 (32.1-32.6) 

469 

470 (33.1-33.6) 
479 (34.1-34.4a) 

485 (35.1) 
486 (36.1) 

487(A.1-A.6) 
493 (B.1-B.4) 

497 (C.1-C.16) 
513 (D.1-D.2) 

515 (E.1-E.14) 
529 (F.1-F.17) 

547 (G.1-G.33) 

581 (H.1-H.ll) 
593 (1.1-1.18) 
611 (J.1-J.12) 

623 (K.1-K.12) 
635 (L.1-L.2) 

637 (M.1-M.3) 

641 (R.l-R.21) 
663 
667 
676 
677 



LIST OF PRINCIPAL SYMBOLS 

Only the principal symbols are listed here. So many symbols are needed that the notation is not necessarily 
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stress · (length) 1 / 2 . 
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Shear modulus 
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y-coordinate of point A(X, Y) on circular crack front 

Second coordinate of (x, y, z) Cartesian coordinate system 
Imaginary part of complex variable z = x + iy 

y-coordinate of point of concentrated load application 

Westergaard stress function 

Z'(z) = dZ(z) I dz, Z(z) = dZ(z) I dz, Z(z) = iz(z) I dz 

Complex conjugate of Z(z) (used in Part I) 

Third coordinate of (x, y, z) or (r, (), z) coordinate system 
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~ (~I, ~II, ~III) 

~crack 

~no crack 

~total 

8o, 8b, 8(x), etc. 

( 

() 

()crack 

Bnocrack 
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v 

II( <p, n, k) 

Load point displacement 

Load point displacement at ith load (P;) 

Additional displacement due to the presence of crack 

Displacement in the absence of crack 

Total displacement (=~no crack+ ~crack) 

Crack surface relative displacement 

Crack opening displacements at specific point on crack (Mode 
I) 

Shell parameter: c2 = (t1R)Jl2(1- v2 ) 

Normal strain components in (x, y, z) coordinate system 

Normal strain components in (r, B, z) coordinate system 

Complex coordinate taken at crack tip 

Second coordinate (polar angle) in [r, B, (z)] coordinate system 
Parametric angle defining point A on crack front of circular, 
elliptical, semi-circular (surface), or quarter-circular (comer) 
crack 
Half central angle contained by circular arc crack(s) (2-D) or 
circumferential crack in cylindrical shell 
Half vertex angle of infinite wedge with symmetrical edge 
crack 
Relative rotation at infmity 

Additional rotation due to the presence of crack 

Rotation in the absence of crack 

Total rotation ( = Bnacrack + Bcrack) 

Elastic constant: (3 - v) I ( 1 + v) for plane stress, 3- 4v for 
plane strain ( = 2/3 - 1) 

Ratio of two systems of applied load 
Shell parameter ( = ()I ylfii = a-JRt) 

Poisson's ratio 

Elliptic integral of the third kind 
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ay, ayp 

T, T£ 

Ty 
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¢, ¢(z) 

cPcrack 

cPnocrack 

cPtotal 

x, x(z) 

w 

a a a 2_ 
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fu2 ' {Jjl ' axay ' etc. 

Notch tip root radius 
Mass density 

Applied stress 
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Normal stress components in (r, (), z) coordinate system 

Yield strength in tension 

Applied shear stress in Mode II and Mode III, respectively 

Yield strength in shear 

Shear stress components in (x, y, z) coordinate system 

Shear stress components in (r, (), z) coordinate system 

Airy's stress function 

Configuration functions for rotation 

Function of complex variable z = x + iy 

Relative rotation at infinity or kink angle (=¢crack) at cracked 
section 

Additional rotation (or kink) due to the presence of crack 

Rotation in the absence of crack 
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FOREWORD 

Fracture mechanics was introduced in the 1947-1952 period using the idea that onset of rapid crack 
extension occurred when the crack extension force became large enough to cause rapid joining of small 
openings near the leading edge of a crack. The "force" concept used was the rate ofloss of stress field energy, 
G, per unit of new separation area. Unfortunately the usual training in stress analysis of engineers did not 
provide methods of estimating values of G. However, in the mid-1950s, use of a relatively simple method of 
crack-stress field analysis, introduced by Westergaard, permitted demonstration that the severity of the 
enclosing stress field, tending to cause crack extension, could be represented by a stress intensity factor, K. 

In addition, values of the force, G, were related to K by the use of equation G = K 2 / E; where E is Young's 
modulus. This led to use of toughness measurements in terms of critical values of K necessary for rapid crack 
extension. This change of concept and nomenclature was of special importance to the understanding and 
practical use of fracture mechanics by engineers, and led immediately to general acceptance of fracture 
mechanics. Despite the sound theoretical basis for the force, G, engineers preferred a representation of critical 
conditions for crack extension in terms of principles of stress analysis with which they were familiar. 

The introduction of the K concept was shown to be of special value for studies of fatigue cracking. It was 
shown that from calibration tests, it was possible to make estimates of the danger of crack growth by small 
initial cracks due to load fluxuations during periods of use in service. The use ofK values for studies offatigue 
cracking was followed by the use of K values for studies of corrosion cracking and corrosion fatigue. 

In the use of fracture mechanics, estimates of K for potential or real cracks are commonly needed. For this 
purpose, Tada's Handbook of K Values (renamed The Stress Analysis of Cracks Handbook) for cracks in 
various structural locations has been widely used. Previously available only in notebook form, this collection 
of K values has been reviewed and checked carefully. 

G. R. Irwin, 1997 
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PREFACE- THIRD EDITION 

The work on this handbook virtually began during the doctoral dissertation of Dr. Hiroshi Tada under the 
direction of Dr. George R. Irwin during the late 1960s at Lehigh University. In that dissertation, a modest 
number of new crack-tip stress intensity factor solutions were developed. Upon completion of his degree, Dr. 
Tada was employed by Del Research Corporation with the primary task of developing material for the Stress 
Analysis of Cracks Handbook. That led directly to the two earlier editions, with Fracture Proof Design 
Corporation providing the venue for much of the work on the latter of the two. This third edition has been 
produced with Dr. Paul C. Paris and Dr. Tada at Washington University, St. Louis, with modest cooperative 
effort from Dr. Irwin. It seems fitting that this long-term effort to develop such a handbook should finally be 
published hardbound by a leading engineering society, The American Society of Mechanical Engineers 
(ASME). 

During the 30 years of development of this work, Dr. Tada has continuously devised new solutions, 
collected others and improved them, and developed fitting formulas and curves to present them in a 
convenient form for use by practitioners and researchers alike in the field of fracture mechanics. His coauthors 
herewith recognize his monumental effort in accomplishing that task. The text accompanying the solutions 
presented in this handbook was the joint task of the three individuals involved, each contributing several 
sections and editing others. In addition, we acknowledge that the original work related to three of the 
appendices included contributions from other coauthors: H. Ernst, R. McMeeking, and L. L. Loushin. The 
involvement of many other individuals through direct assistance, suggestions, corrections, and encourage
ment throughout the 30 years are also noted and appreciatively acknowledged. 

There is a software disk (see pages 676-677) available to purchasers of the third edition which allows rapid 
numerical computation of some much-used stress intensity factor K formulas for commonly adopted test and 
crack configurations found in practice. We especially thank Drs. Dilip Dedhia and David Harris for their 
interest in this book. Incidentally, the new appendix on K values for plates subjected to pinching loads was in 
fact originally a topic raised by the dissertation of Dr. Harris. 

This third edition also adds new appendix sections on the J-Integral, on displacements prescribed on crack 
surfaces, on plastic zone instability (explaining a potentially interceding "elastic" failure mechanism), on 
engineering estimates of stress intensity factors, and Mode III plasticity solutions, as well as about 30 new 
solution pages and modifications of many older solutions. 

The objective of this and each edition has been to document all of the important methods and results of 
elastic stress analysis as may be applied to small-scale yielding fracture mechanics and beyond. The principles 
and methods are found in the initial text sections and in the many appendices provided. Numerical approaches 
such as finite element methods, boundary collocation methods, and so on, remain in such a high state of 
development that discussion of them has been deliberately omitted. However, we have attempted to include all 
of the relevant and lasting material on elastic analysis as it applies to fracture mechanics and related 
disciplines. 

Hiroshi Tada, Paul C. Paris, George R. Irwin, September 1997 
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PREFACE- SECOND EDITION 

Since the last modification of this handbook in 1975, many new results have been forthcoming that are 
appropriate to include herein. Over 100 new solutions and other material have been added. Some corrections 
and modifications for completeness of existing crack stress analysis solutions have also been included in the 
new edition. 

The project of further developing this handbook is ongoing and we hope to offer additional results some 
time in the future. 

We thank the many readers who have offered comments and corrections over the past 1 0+ years. Further 
suggestions are welcome. 

Hiroshi Tada, Paul C. Paris, October 1985 
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PREFACE - FIRST EDITION 

This text is intended to provide the user with a comprehensive source of formulas and stress analysis 
information on crack problems. The emphasis is on useful information for treatment of actual problems on 
crack propagation through fracture mechanics correlation parameters and current fracture criteria, such as K1 

approaching K1c as a plane strain fracture criterion. 
The information provided, however, is not limited to that used in current practice, but also embodies other 

fundamental stress analysis results. For example, where stress functions are known for the complete solution 
to a crack problem they are either listed or referenced; again, where they are known, functions are listed that 
may be readily converted to displacements, such as integrals of stress functions. 

Each numerical solution and approximation method is accompanied by the author's estimate of the 
accuracy of the results or the method; moreover, source references are listed in all cases for those users who 
wish to explore further details. 

The information presented is useful only to the degree that it can be understood and properly used. For this 
reason, descriptive sections of text material are included (a) to define the meaning of the information 
presented, (b) to indicate and illustrate its conversion to other forms, and (c) to develop methods of applying it 
to actual cases or problems. 

In addition, there are sections of text devoted to (a) the theory and useful methods of compliance calibration 
analysis; (b) weight function analysis for handling certain cases of arbitrary loading; (c) orthotropic, 
anisotrpoic, and dynamic effects; and (d) plasticity analysis of crack problems, especially a discussion of the 
J-Integral methods. Other implications of crack stress analysis (e.g., stress concentrations and notch field 
equations) and related results (e.g., electric fields in plates with cracks for electrical potential calibration) are 
given where available. 

Obviously, we intended not to limit the material presented to idealized stress analysis results alone, but 
rather to expand those results where usefulness will be enhanced. For that reason any suggestions by the 
reader for future additions are welcome. 
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2 Part I 1.1 

INTRODUCTION 

Fracture studies of structural elements have been revolutionized in the last 50 years by the analysis of their 
sensitivity to flaws or cracklike defects. Within these studies an essential ingredient is reasonable and proper 
stress analysis especially with regard to flaws with high local elevations of stresses from which fractures 
progress through various crack propagation mechanisms, including corrosion and fatigue cracking. 

Full studies of fracture behavior cover both the stress analysis aspects and the material behavior in terms of 
resistance to the stresses imposed. However, the purpose here is limited to the development of significant 
stress analysis details and relevant parameters, and to the compilation of available stress analysis results with 
cracks present insofar as they may be foreseeably related to actual fracture studies. 

The redistribution of stress in a body caused by introducing a crack or notch may be solved by methods of 
linear-elastic stress analysis. Of course the greatest attention should be paid to the high elevation of stresses at 
or surrounding the crack-tip, which will usually be accompanied by at least some plasticity and other 
nonlinear effects. Nevertheless linear-elastic stress analysis properly forms the basis of most current fracture 
analysis, at least for "small scale yielding" where all substantial nonlinearity is confined within a linear-elastic 
field surrounding the crack-tip. Consequently, the character and significant parameters oflinear-elastic crack
tip fields are examined first. 

CRACK-TIP STRESS FIELDS FOR LINEAR-ELASTIC BODIES 

The surfaces of a crack are the dominating influence on the distribution of stresses near and around the 
crack-tip, as they are the nearby and stress-free boundaries of the body. Other remote boundaries and loading 
forces affect only the intensity of the local stress field at the tip. 

The stress fields near crack-tips can be divided into three basic types, each associated with a local mode of 
deformation as illustrated in Fig. 1. The opening mode, Mode I, is associated with local displacement in which 
the crack surfaces move directly apart (symmetric with respect to the x - y and x - z planes). The edge-sliding 
mode, Mode II, is characterized by displacements in which the crack surfaces slide over one another 
perpendicular to the leading edge of the crack (symmetric with respect to the x- y plane and skew-symmetric 
with respect to the x - z plane). Mode III, the tearing mode, finds the crack surfaces sliding with respect to one 
another parallel to the leading edge (skew-symmetric with respect to the x- y and x- z planes). The 
superposition of these three modes is sufficient to describe the most general three-dimensional case of local 
crack-tip deformation and stress fields. 

X 

Fig. 1. Basic modes of crack surface displacements. 
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The most direct approach to determine the stress and displacement fields associated with each mode follows 
the manner of Irwin (1957), which is based on the method of Westergaard (1939). Modes I and II can be 
analyzed as two-dimensional plane-extensional problems of the theory of elasticity, which are subdivided as 
symmetric and skew-symmetric, respectively, with respect to the crack plane. Mode III can be regarded as the 
two-dimensional pure shear (or torsion) problem. Referring to Fig. 2 for notation, the resulting stress and 
displacement fields are given below. 

y 

X 

~- \ettd ins edge. 
~ ihe CrA-ck 

"z 
Fig. 2. Coordinates measured from leading edge of a crack and stress components in the 

crack-tip stress field. 

Mode 1: 

KI B [1 . B . 3BJ o( v,) (h = --1-12 cos2 - Slll2Sill2 + O"xo + r 
(21rr) 

O"y = K 1 112 cos~ [ 1 + sin~sin 3JJ + o(/lz) 
(21rr) 

KI . B B 3B o( 1/z) 
Txy = --1-12 Sill 2 cos 2 cos 2 + r 

(27rr) 

and for plane strain (with higher-order terms omitted) 

O"z = v(O"x + O"y ), Txz = Tyz = 0 

K 1/2 () [ • 2 ()] u = G [r/(27r)] cos 2 1 - 2v +Sill 2 

K 1/2 • () [ 2 ()] v = G [r/(27r)] slll 2 2- 2v- cos 2 
w=O 

(1) 
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Mode II: 

KII . B [2 B 3BJ o( If,) (]"x =---If, sm2 + cos2cos2 + (]"xo + r 
(21rr) 

(]"y = ___!&__sinflcosflcos3() + o(rlj') 
( )

I/2 2 2 2 
21rr 

T =___!&_cos fl. [1- sinflsin 3(}] + o(/1') xy I; 2 2 2 
(21rr) 2 

and for plane strain (with higher-order terms omitted) (2) 

{}"z = v( (]"X + (]"y), Txz = Tyz = 0 

u = ~ [r/(27r)]lj'sin ~ [ 2- 2v + cos2 ~ J 

v = ~ [r/(27r)]lj'cos~ [ -1 + 2v + sin2 ~] 
w=O 

Mode III: 

Km . () o( I/,) 
Txz =---I/ Sml+TxzO + r 

(21rr) 2 

Km () o( I/,) 
Tyz = --I

12 
COS 2 + r 

(21rr) 
(3) 

(]"x = (]"y = {}"z = Txy = 0 

Km [(2 )/ ]I/, . () w=G r 1r sm 2 
u=v=O 

Equations (1) and (2) have been written for the case of plane strain (i.e., w = 0) but can be changed to 
plane stress easily by taking az = 0 and replacing Poisson's ratio, v, in the displacements with vl(1 + v). 

In Eqs. (1)- (3), higher-order terms such as uniform stresses parallel to cracks, axO, and TxzO• and terms of 
the order of square root ofr, O(r y,), are as indicated. However, normally these terms are omitted since as r 
becomes small compared with planar dimensions (in the x - y plane) of significance to the stress analysis, 
these higher-order terms become negligible compared with the leading 11 vr term. Therefore these leading 
terms are the linear-elastic crack-tip stress (and displacement) fields. 

The parameters K1 , K11 , and Kill in these equations are called crack-tip stress (field) intensity factors for the 
corresponding three modes (Fig. 1). Since K1 , KII, and Kill are not functions of the coordinates, rand(}, they 
represent the strength of the stress fields surrounding the crack-tip, as in Eqs. (1)-(3). Alternately, they may 
be mathematically viewed as the strengths of the 11 vr stress singularities at the crack-tip. Their values are 
determined by the other boundaries of the body and the loads imposed, consequently formulas for their 
evaluation come from a complete stress analysis of a given configuration and loading. 

Physically, K1 , K11 , and Kill may be regarded as the intensity ofload transmittal through the crack-tip region 
caused by the introduction of a crack into the body of interest. Correspondingly, formulas for K may be 
regarded as formulas reflecting the redistribution of load paths for transmitting force past a crack. Thus it is 
plausible to observe that small amounts of plasticity or other nonlinearity at the crack-tip do not seriously 
further disturb the load redistribution, hence the relevance of K1 , K11 , and Kill remain. 

Similarly, from a physical standpoint, K1 , KII, and Kill may be regarded as representing the intensity of the 
linear-elastic stress distribution surrounding a crack-tip, where small ammounts of nonlinearity at the crack-tip 



1.3a Introductory Information 5 

are embedded well within the field and do not significantly disturb it. Thus, a given combination of values of 
K1 , K1I> and Kill represents a unique crack-tip stress field environment for small-scale yielding. Because 
fracture processes of a material may be regarded as "caused" by this surrounding crack-tip stress field 
environment, the intensity factors K1 , K11 , and Kill play a large role as fracture correlation parameters in 
current practice. For this reason, much of the tabulated material to follow includes formulas for KI> KII, and 
Kill for various configurations and loadings. 

Finally, from Eqs. (1) - (3) it is significant to note that stress intensity factors have units of 

-3/2 
(force) x (length) 

Moreover, since they are linear factors in linear-elastic stress equations, they must be proportional to the 
applied loads. Thus it can be observed on a dimensional basis that in addition to the load they must contain 
other characteristic lengths, such as crack size. This result is a main feature of implying flaw-size effects in 
fracture, which indeed are observed, and further implies that these size effects can be fully analyzed only if 
stress analysis effects are included. 

NOTE: It is interesting to note that the expressions in the brackets of the displacements u and v in Eqs. (1) are identical, that is, 

2 () 2 () 
1 - 2v + sin - = 2 - 2v - cos -

2 2 
2B 

= (3- cos l (see P. 1.3b and P. 1.3c) 

However, since these distinct expressions have been almost invariably used up to present, they are retained in Eqs. (1). It 
immediately follows from this identity that the magnitude and direction of the Mode I crack-tip displacement vector u = ( u, v) 
are given by 

I ~~ K1 If( 2 ()) u =- - (3-cos-
G 21r 2 

v () 
-=tan
u 2 

The proportion and direction of the displacement vector in Mode I crack-tip field are schematically presented in Fig. 3. 

Fig. 3. Mode I displacement field. 
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ALTERNATE EXPRESSIONS FOR CRACK-TIP ELASTIC FIELD 

In Modes I and II, stress and displacement 
components given by Eqs. (1) and (2) are 
sometimes expressed in alternate forms. These 
expressions and the corresponding expressions for 
r - () components are given below. 

Fig. 4A 

(1) x- y Components (Fig. 4A) 

Mode 1: 

Mode II: 

ax 2 2 2 2 
K1 (} . (J . 3(} K1 1 (J 5(} 

{ ay } = v'liD-cos; 1 + slll2slll 2 = v'liD-4 5 cos 2- cos2 { 

1- sin~sin 3(}} { 3cos~+ cos5(}} 

Txy sin~ cos 3B - sin~+ sin 5(} 
2 2 2 2 

-sill- +cos-cos- - Sill--Sill-
ax 2 2 2 2 2 

{ 
. (} (2 (} 3(}) } { 5 . (} . 5(} } 

LJ oo'HHn~,rn 3!) 3c~~+oo, 5J Kn . (} (} 3(} Kn 1 . (} . 5(} 
ay =-- sin-cos-cos- =--- -slll-+slll-

v'liD- 2 2 2 y'2ID-4 2 2 

u Kn r Sill 2 + cos 2 Kn r 1 + Sill 2 + Sill 2 
{ 

· B (f3 2 B) } { (4(3 1) · (} · 3B } 

{ v} = G~ -cos~ (f3- 2 + cos2 ~) = G~4 -(4(3- 5) cos~- cos3! 

where 
plane strain 

plain stress 

1.3b 
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(2) r - B Components (Fig. 4B) 

Fig. 48 

Mode 1: 

{

l+sin
2

fl} {5cosfl-cos3(}} 

{ :: } = __!!!..__cos~ cos 2 fl 
2 

= __!!!..__ . ! 3 cos~ + cos ie 
,fiir 2 2 ,fiir 4 2 2 

Tro sin fl cos fl sin fl + sin 3 (} 
2 2 2 2 

{ Ur} K1 fr{ cos~}( 2(}) KI Jrl{ (4(3-3)cos~-cos 3!} 
uo =ay"br -sin~ /3-cos 2 =aV"br4 -(4/3-l)sin~+sin3! 

Mode II: 

{ } K If{ -sinfl (!3- 3 cos2 fl) } K If 1 { -(4/3- 3) sinfl + 3 sin 3(}} Ur II r 2 2 II r 2 2 

uo =c 21r -cos~(/3+2-3cos2 ~) =G 27r4 -(4/3-l)cos~+3cos 3! 

plane strain 

where 
plain stress 

NOTE: For Mode I, Ur = u, u8 = -v (displacement is in (}h direction). 
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SLENDER NOTCHES AND STRESS CONCENTRATIONS FROM 
STRESS INTENSITY FACTORS 

1.4 

It is worthy to note that crack-tip stress intensity factors, as detailed in Eqs. (1)- (3) of the previous section, 
are fully applicable to the tips of deep slender notches (Creager 1967). See Fig. 5 for location of coordinates. 
For the region of the notch tip where r 1 is small compared with other planar ( x - y plane) dimensions (except 
for notch breadth), the stress field becomes ( P/2 ~ r 1 < p, small 81) 

Mode I: 

{
- cos3(} 1

} { 1- sin fl.:. sin 3(} 1
} 

Ux K 2 K ()I 2 2 
I p 3(}1 I · (}1 · 3(}1 

{ u } =--·- cos- +--cos- 1+sm-sm- +---
Y 12-='1 2 I 2 12-='1 2 2 

T y L.'TrT r . 3(}1 y L.7fT 2 . (}1 3(}1 
xy -sm-y sm 2 cos 2 

(4) 

Mode II: 

{ 
sin3(} 1 

} { -sintl!.(2+cosftcos3(}1
)} Ux 2 2 2 2 

Kn p . 3(}1 Kn . (}1 (}1 3(}1 

{ ;:} = ~· 2r1 -Sill~ + ~ Sl~2COS2C~Sl 
1 

+---
y -cos£ cosfL (1- sinfLsin£) 

2 2 2 2 

(5) 

Mode III: 

Txz -{0}+ Kill -sm2 +---{ . (}1} 
{ TyJ - y!2i? COS ~ (6) 

Note that by selecting the center of coordinates at the point P/2 from the notch tip the expansion in Eqs. 
(4)-(6) simply adds an additional term for Modes I and II when directly compared to Eqs. (1)-(3). 
Moreover, the intensity of the added terms are also given by K1 and KII and these are exactly the same K's as 
found in Eqs. (1)- (3). Therefore, formulas for stress intensity factors for cracks, as is extensively tabluated in 
this handbook, are also fully applicable to elastic stress computations for tips of slender notches. 

Moreover, the first terms ofEqs. (4) and (5) are significant compared to the second only in the region near 
the end radius of the notch, r 1 ____, P/2, whereas at greater radius-but still small compared with other planar 
dimensions-the same crack-tip stress field, as in Eqs. (1) and (2), will dominate. Therefore, with the 
"disturbance" or "blunting" of a crack, or giving it a finite radius, p, the original crack-tip stress fields still 
surround the crack-tip. This is clear in the linear- elastic analysis case here, and it should be equally clear that a 
comparably (compared top) sized zone of plasticity and/or other nonlinearity near a crack-tip is probably even 
less of a disturbance. 

For a Mode I-type loading and configuration (i.e., KII and Kill zero), for example, Eq. (4) may be used to 
fmd the stress concentration. In such a case 

(7) 

This result is good for slender notches, a practical example of which is "stop-drilled" cracks (a common 
practice in aircraft maintenance). Applying this result to Fig. 6, an elliptical hole through a wide plate where 



1.4a 

y 

{Q) 

(b) 

y 

(C) 

Fig. 5. 
(a) Deep slender notches and coordinate system for 

notch-tip stress fields. 
(b) Corresponding crack. 
(c) Conic section (parabola) used for the analysis. 
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X 

the semi-major axis, a, is perpendicular to a remotely applied tension stress, O", the comparable crack solution 
(see page 5.1) is 

Kn =Kill= 0 (8) 

inserting Eq. (8) into Eq. (7) gives 

(9) 
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t t to- t t 

' Fig. 6 

The result is the well-known stress concentration solution for biaxial tension, O", for which the comparable K1 

solution is also as in Eq. (8). For uniaxial stress, O", the stress concentration result is 

(10) 

For slender notches (p «a), Eqs. (9) and (10) are in fact reasonably in agreement. The added term in Eq. 
(10) of one times O" is to be added only in cases of remotely applied uniform uniaxial stress [and is simply 
comparable to accounting for the additional O"xo term in Eqs. (1) and (4)]. Knowing that Eq. (10) then follows 
from Eq. (9), the full stress concentration solution followed from Eqs. (7) and (8). Noting now that these 
stress concentration solutions, both Eqs. (9) and (10), are, actually not limited to slender ellipses, the power 
and accuracy of this method is demonstrated. 

For further demonstration, for the same elliptical hole in a large plate but loaded by equal and opposite 
forces (per unit plate thickness), P, on the surface of the hole at the ends of the semi-minor axis, b (see Fig. 7), 
the comparable crack solution (see page 5.9) is 

p 
K1 = ;;;;;; , Kn = KIII = 0 

y7ra 

Combining Eqs. (7) and (11) and noting that pa = b2 for any ellipse gives 

which again is the complete stress concentration solution, not limited to slender notches (Savin 1961). 

(11) 

(12) 

It is not the intended purpose to present extensive information on stress concentrations here, but simply to 
illustrate the power of crack stress analysis. Nevertheless, it is evident that close relationships exist between 
stress concentration analysis and crack analysis. Later, converse to the preceding discussion, it will be pointed 
out that K formulas can also be derived from stress concentration formulas. For further study in stress 
concentration theory, Savin (1961), Neuber (1937) and Peterson (1953) are recommended as starting points. 

In other instances, the role and formulas for crack-tip stress intensity factors K1 , K11 , and KIII are also 
preserved; for example, see Appendix D for effects of elastic anisotropy. Hence, the most important point of 
this discussion of notches is to emphasize the generality and scope of crack-tip stress field analysis. 
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p 

p 

Fig. 7 

ENERGY RATE ANALYSIS OF CRACK EXTENSION 

Energy rate analysis of the effects of flaws historically preceded crack-tip stress field analysis. The Griffith 
Theory (Griffith 1920) and later modifications (Irwin 1948, 1952; Orowan 1949), termed the Griffith-Irwin 
Theory, made use of this approach. Basically, these methods use an energy balance analysis of crack 
extension. 

The total elastic energy made available per unit increase in crack surface area (one side of the crack surface) 
is denoted by Q for the linear-elastic case (Irwin 1957) (the non-linear counterpart, J, is discussed later; see 
Appendices A and J). Physically, Q, may be viewed as the energy made available for the crack extension 
processes at the crack-tip as a result of the work from displacements of loading forces and/or reductions in 
strain energy in a body accompanying a unit increase in crack area. Alternatively, Q can be regarded as a 
"generalized force" based on the potential energy change per unit forward displacement of a unit length of 
crack front, which results in Q being defined as "the crack extension force." 

Following this line of argument, it is not difficult to show that for linear-elastic conditions (Irwin 1948, 
1952; Paris 1957) 

9=-
8Ur(tl;,A) 

(13) 
a A 

and 9 _ 8Ur(P;,A) 
-+ aA (14) 

P2 ac 
(15) and 9=-·-

2 aA 

where Uris the total strain energy in a cracked body with a crack area A. Uris alternately expressed in terms 
of A and load point displacements, fl;, or in terms of A and loads, P;. In Eq. (15), Cis the elastic compliance 
and the equation is written for a single loading force, but may be generalized for several forces (Paris 1957). 
Derivations of results such as Eqs. (13), (14), and (15) are also available for distributed boundary tractions, 
and so on (Bueckner 1958). Equation (15) and its consequences are also discussed in Appendix A. 

The Q implied by Eqs. (13)- (15) is the average value along a crack front weighted for the extent of crack 
extension involved for each increment of crack front in the three-dimensional sense. In two-dimensional 
situations, such as uniform extension of a straight-through crack in a thin plate subject to extension, Q may be 
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viewed as the value of a point quantity along the crack front. Moreover, for certain purposes, the three
dimensional situation may be viewed as being made up of two-dimensional slices to view Q as a point 
quantity. 

The expressions for Q, Eqs. (13)-(15), are often useful as tools to compute Q, itself, and other quantities. 
For an example, see Appendix B, where a method of computing displacements is developed using Eq. (14). 
Equation (13) will be used as an example as follows. 

RELATIONSHIPS BETWEEN Q AND K 

If a cracked body is put into a "system-isolated condition," that is, with load point displacements fixed so 
that no work is done by loading forces, then Eq. (13) becomes self-evident. The energy made available for 
crack extension is the strain energy released by the extension. 

Consider that a body with a crack is put into a system-isolated condition for conceptual clarity. 

y 

(a) 

tb> 

Fig. 8 

Subsequently, presume the crack-tip is elastically 
pulled closed over a distance a, as illustrated in 
Fig. 8, from (a) to (b). The work done in elastic 
closure will all go into increasing the total strain 
energy Ur. Therefore (Irwin 1957; Paris 1965) 

9=- ~Uri 
~A system isolated 

" 
-1m- -+-+--_ 1. 2 J (CTyV TyxU TyzW)dx 

a->0 a 2 2 2 
(16) 

0 

Where ay, Tyx, Tyz, and u, v, w are stresses and 
displacements of the crack surface, respectively, 
occurring on the portion of the crack surface pulled 
closed. With the limit a ~ 0, the stress and 
displacements may be obtained from the crack-tip 
fields, Eqs. (1)-(3). The stresses are appropriately 
obtained with r = x, () = 0, and the displacements 

with r =a-x,()= 1r. Making these substitutions and integrating Eq. (16) leads to (for plane strain) 

1-v 2 1-v 2 1 2 
9=--KI +--Ku +-KIII 

2G 2G 2G 
(17) 

It is noted that each term in the integrand of Eq. (16) leads to a corresponding term in Eq. (17) with no 
interaction between Modes I, II, and III. Noting E = 2(1 + v)G and that 

E'=E (plane stress) 

or (18) 
E' = E j ( 1- v 2 ) (plane strain) 

The total energy rate, Q, may be in general subdivided for each mode 

(19) 
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where 

(20) 

It should be noted that these relationships are for straight-ahead crack extension, as developed from Eq. (16) 
and Fig. 8. Therefore, although they may not suit all physical applications, they form a useful conceptual basis 
and are suitable for many computations. 

Corresponding relationships for anisotropic elastic bodies are noted in Appendix D. 

SUPERPOSITION OF Q AND K RESULTS 

Often in applications, a single cracked body or member is subject to several loading force systems (each 
system in equilibrium) which can be denoted as systems (1 ), (2), (3), ( 4), ... , etc. Because K values are factors 
containing the load linearly in linear-elastic stresses, superposition applies. That is to say, the total K for all 
loading systems applied simultaneously is the algebraic sum of K values for each system applied separately. 
However, because different fields of stress occur for each mode, as noted from Eqs. (1)- (3), the sums must be 
separated for each mode or 

KI = KI(l) + K/(2) + K/(3) + - - -- } 
Kn = Kn(l) + Kn(2) + Kn(3) + - - --
Kill =Kill(!) + Klll(2) + Klll(3) +- - --

(21) 

Using Eq. (20) to restate Eq. (21) in terms of energy rates 

(22) 

Equations (21) and (22) along with Eq. (19) become the rules for superposition of crack-tip stress intensity 
factors and energy rates. 

It is of interest to note that Eqs. (21) imply that Green's function methods may be used for distributed force 
systems, again separating modes; although here Eqs. (21) are stated for discrete systems. The Green's 
function methods are discussed later (see pages 1.17 and 1.18). 
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MEANING OF PLANE STRESS AND PLANE STRAIN FOR 
FRACTURE MECHANICS PURPOSES 

The mathematical definition of plane strain is that throughout a deformed body 

An alternate definition of plane strain is 

u = u(x,y) } 
v = v(x,y) 
w = 0( or constant) 

c _ aw _ o } cz-a-
"1 - aw+au- 0 
,xz- ax az-

"(yz = ~; + g~ = 0 

1.9 

(23) 

(24) 

It can be noted that Eqs. (24) follow directly from Eqs. (23) or vice-versa. Noting Hooke's laws, yet another 
definition of plane strain is 

Again Eqs. (25) follow from Eqs. (24). 

O"z = v( O"x + O"y) } 

Txz = 0 
Tyz = 0 

On the other hand, plane stress is mathematically defined as 

O"z = 0} 
Txz = 0 
Tyz = 0 

(25) 

(26) 

where, as before, an alternative defmition in terms of strains or displacement derivatives is possible but is not 
of useful clarity. 

The term "generalized plane stress" is applied to cases of deformation where Eqs. (26) apply on the average 
through the thickness of a thin plate subject to extensional forces. Often, when the term "plane stress" is used, 
"generalized plane stress" is actually implied. 

The above defmitions of plane stress and plane strain are those used in books and reports on the theory of 
elasticity, the theory of plasticity, and other such works on solid mechanics in general. However, in fracture 
mechanics terminology, these terms take on special, more restricted meanings. In fracture mechanics, instead 
of characterizing stress and strain states throughout a body, special attention is given to the crack-tip and 
surrounding region. "Plane stress fracture" or "plane strain fracture" have come to mean that the stress and 
strain conditions within the plastic zone at the crack-tip are plane stress or plane strain, respectively. 

Due to the high stress-strain gradients near a crack-tip, the zone of plasticity at the tip is constrained against 
contraction along the crack front by the elastic material surrounding it, if the plastic zone size is small 
compared with the length of the crack front. This creates plane strain fracture in the "linear-elastic fracture 
mechanics" sense, that is, where so-called "small-scale yielding" (compared with x- y planar dimensions) 
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conditions apply. In applications of current linear-elastic fracture mechanics analysis to flat plate test 
specimens (or structural members) with through-the-thickness cracks, the ratio of the crack-tip plastic zone 
size to sheet thickness becomes the criterion of plane stress vs. plane strain conditions. Ironically then, the 
most common applications of fracture mechanics stress analysis to plates with through cracks are situations 
where stress analysis of elastic portions of the body is properly done using plane stress to characterize 
conditions, but where frequently the conditions within the crack-tip plastic zone are indeed plane strain. This 
is called a "plane strain fracture" situation. 

In applying Eqs. (20) to convert stress intensity factors to energy rates, or vice-versa, along with Eq. (18), a 
confusion (if not a paradox) arises. If elastic portions of the body are plane stress and the crack-tip region is 
plane strain, which conditions should be used in the conversion? 

Fig. 9 

For example consider a long, slender double 
cantilever beam configuration of constant thick
ness, as illustrated in Fig. 9. Considering the case of 
pure moments, M, is instructive (Rice, 1964), since, 
clearly, adding crack length is directly equivalent to 
adding material at the center of the cantilever arms. 
Plane stress conditions are thus present where all of 
the strain energy is added at the center of the arms. 
Nevertheless, conditions near the crack-tip can be 
plane strain, and considering the crack closure 
derivation ofEqs. (20) from Eq. (16), it is also clear 

that crack-tip stress field conditions apply to Eqs. (20) and the conversion should be made using E' for plane 
strain, Eq. (18). Plasticity at the crack-tip tends to confound this discussion, but not if the surrounding elastic 
field is plane strain as well as the plastic zone. The complexity of these concepts is due to the attempt to 
resolve a 3-dimensional situation with 2-dimensional viewpoints, which apparently is unavoidable. Although 
this example illustrates that E' should be adjusted for crack-tip conditions, for simplicity, it is common 
practice to use the plane stress value, E, in Eqs. (20). Since vis normally about 0.3, the resulting error, if any, 
is less than 5% in computing K formulas. This practice is again mentioned in Appendix A, as compliance 
calibrations require conversions from g to K. 

Finally, for elastic-plastic fracture mechanics, where small-scale yielding at a crack-tip does not apply, 
plane strain fracture events or tests require only that plane strain conditions exist in the "fracture process zone" 
at the crack-tip. This fracture process zone is the region in which the immediate crack extension processes 
such as advanced separations, void growth, and coalescence are taking place. This process zone may be 
embedded well within the crack-tip plastic zone, near the tip of the crack. Therefore it is evident that for plane 
strain in the process zone, it is not necessary for the whole plastic zone to be in a state of plane strain. 
Nevertheless, it is also evident that the immediate region of the crack-tip, that is, the process zone, must be 
subjected to plane strain. Therefore, blunting of a crack upon loading to a radius (or "crack opening stretch") 
characterized by J I(}" y would at least require J I(}" y to be small compared with specimen thickness, especially 
for through-the-thickness cracks. (Further discussions of J appear in Appendix J.) For this context, J may be 
viewed as the elastic-plastic analog to g. 

In summary, the reader is cautioned that for fracture mechanics purposes, the terms plane stress and plane 
strain are often used as local definitions of conditions in the crack -tip region. Moreover, the local size of the 
region involved will depend on the analysis approach used, linear-elastic vs. elastic-plastic, and is 
consequently subject to future developments in fracture analysis. Nevertheless, even within the most 
developed context of linear-elastic fracture mechanics confusion still remains, for the example cited of 
converting g to K, and other circumstances. 
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EFFECTS OF SMALL-SCALE YIELDING ON LINEAR-ELASTIC 
FRACTURE MECHANICS 

1.11 

"Small-scale yielding" means that the nonlinear zone at a crack-tip is small compared with the region in 
which the elastic crack-tip stress fields, Eqs. (1)-(3), apply. Indeed, the circumstances are that the nonlinear 
or plastic zone may be regarded as embedded well within a surrounding elastic region. How small the plastic 
zone must be, compared to other (planar) dimensions, depends on the accuracy desired. 

The size ofthe crack-tip plastic zone may be estimated from Eq. (1), for Mode I, if small-scale yielding is in 
fact present. In any event, from dimensional considerations ofEq. (1), it is evident that the form for an index 
of the size, ry, of the plastic zone is 

ry = a(~) 2 
O"yp 

(27) 

where O" YP is a yield strength for the material. The values of a may also be estimated from Eq. (1) by taking 
the stresses ahead of the crack, that is, e = 0, and computing the point at which yield criterion is first satisfied 
approaching the crack-tip (Paris 1957) and also adjusting for shape of the yield zone, and so on, the most 
commonly assumed values are (Irwin 1960b) 

{ 
_1._ (plane stress) 

a= 2{ 
61T (plane strain) 

(28) 

The plasticity at a crack-tip causes some redistribution of stresses to maintain equilibrium and therefore the 
full width of the plastic zone, r P, is estimated at just twice the above results, that is 

rp = 2ry (29) 

and it is emphasized that these results, although dimensionally correct, are merely estimates, since work
hardening, large strains, and other obvious influences are ignored. 

The redistribution of stress to satisfy equilibrium implies that the center of coordinates (r, B) for the elastic 
field, Eqs. (1), is advanced ahead of the real crack-tip into the zone of plasticity (Paris 1957; Irwin 1960b). 
This correction for the "effective crack size" is often taken as approximately equal tory added to the actual 
crack size. Using an "effective crack size" in linear-elastic fracture mechanics stress analysis calculation is 
regarded as sometimes appropriate. However, if very high accuracy is desired, it is appropriate to have ry 
small enough compared to planar dimensions, including crack size, that it may be entirely neglected. On the 
other hand, for the purpose of examining trends, and for low-accuracy calculations, the "effective crack size" 
correction has been proposed at times for application to large-scale yield situations. In any event, judgment is 
required for particular applications. 

Nevertheless, provided the scale of yielding is small enough, all of the preceding results and derivations 
based on linear-elastic theory are, indeed, correct and appropriate to apply to real physical situations. 
Therefore, this discussion now proceeds based mainly on linear-elastic analysis and methods, but it will also 
provide other nonlinear analyses and mathematical models as seems appropriate for possible future use (e.g., 
see Appendix J). 
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INTRODUCTION TO STRESS FUNCTION METHODS 

As shown by the preceding discussion, the primary objective of crack stress field analysis is to obtain a 
characterization of the stress-strain region enclosing the crack-tip, the region within which the progressive 
separational process occurs. Characterization in terms of K values, assuming linear-elastic behavior, only 
requires knowledge of stresses and strains close to the crack-tip. However, studies of crack extension often 
involve displacement measurements at some distance from the crack-tip. Thus solutions of crack problems 
that permit stress and displacement calculations in the entire stress field are of interest. Solutions of Mode I 
and Mode II crack problems in closed form are known for a large number of 2-dimensional, linear-elastic 
problems. The solution procedure uses the stress function approach and, therefore, the stress function method 
is discussed first. Except for special problems, mainly those of Mode III type, closed-form solutions are 
strictly applicable only to infinite plate crack problems. Computations of K values and displacements for strip 
and finite-plate crack problems usually require a numerical approach. In such problems, however, the stress 
function viewpoint can often enhance the efficiency of numerical methods. 

Choosing x,y Cartesian coordinates, the stress equilibrium equations are 

These equations are satisfied if we assume 

The Hooke's Law equations are 

Ecx : O"x - v( O"y + O"z) } 
Ecy- O"y- v(ux + O"z) 
E'"'(xy = 2(1 + v)Txy 

(30) 

(31) 

(32) 

where O"z = 0 for plane stress and O"z = v( O"x + O"y) for plane strain and the identity E = 2G( 1 + v) can be 
noted. 

A convenient equation representing the fact that three strains are defmed in terms of derivatives of only two 
displacements (strain compatibility) is given by 

2 2 2 
0 Ex 0 Ey 0 '"'(xy -+-=-{)y2 8x2 oxoy 

Substituting Eq. (31) into Eq. (32), followed by use of Eq. (33), provides 

v2 (V2 <I>)=o 
2 {)2 {)2 

where \7 =-+-
8x2 a/ 

(33) 

(34) 

Equation (34) is obtained independently of whether plane-stress or plane-strain is assumed in Eq. (32); <I> is 
termed the Airy stress function. 
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As a starting point for solving specific problems, Muskhelishvili (1933) noted certain analysis advantages 
were possible if one assumed the solution of Eq. (34) was either the real or the imaginary part of 

F = z* rjJ(z) + x(z) (35) 

where z = x + iy and z* = x- iy. If the problem can be arranged so that the crack of interest occupies a 
straight segment of the x-axis (y = 0), a simpler, one-function approach suggested by Westergaard (1939) is 
often useful. Westergaard discussed several Mode I crack problems that could be solved using 

where 

and, for subsequent use, 

From Eqs. (36) aud (31) 

<I> = Re{z(z)} + y Im{:Z(z)} 

(]"x = ReZ -y lmZ 1
} 

(]"y =:_ ReZ + y
1 
ImZ' 

Txy- -y ReZ 

(36) 

(37) 

(38) 

For a straight crack ony = 0, a loading symmetry such that Txy = 0 ony = 0, corresponding to Mode I, is 
automatically furnished by Eq. (36). The displacements, assuming plane-strain, are given by 

2Gu = (1 - 2v) ReZ- y ImZ} 
2Gv = 2(1 - v) ImZ- y ReZ 

For plane-stress, v in Eq. (39) can be replaced by v/(1 + v). 

(39) 

In checking the derivation of Eq. (38) from Eq. (36) and of Eq. (39) from integration of Eq. (32), it is 
helpful to use the Cauchy-Riemann equations. These are 

(40) 

In terms of Eq. (35), Eq. (36) corresponds to assuming 

<I>= ReF, 
- 1-x = Z- zrjJ, rjJ = -Z 

2 
(41) 
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The solution of one of the crack problems briefly discussed in Westergaard (1939) is given by 

(Y 

z ( z) = ---;=====:= VI- (a/4 
(42) 

The problem solved with this stress function is the crack problem studied by Griffith (1920) with the aid of 
previous work by Inglis (1913); a central crack oflength 2a, with O"y = O"x = O" at distances remote from the 
crack. 

In terms of the vectors 

Equation (42) can be expressed as 

From differentiation of Eq. (42) 

and can be expresses as 

From integration ofEq. (42), 

and can be expressed as 

CYr i{B- 81 +B,} 
Z=--e 2 ,;r;r; 

2 

z' (z) = -CYa 3 

{ 2 2} /, z -a 

- rz-2 Z(z) = rYV z- -a-

·(81 +82 ) 

Z = CYVrJF2e1 
- 2 -

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

The angles in the preceding equations are restricted to the range -1r to 1r (radians). Equations ( 44), ( 46), and 
(48) are helpfuul in forming the real and imaginary parts of functions as indicated in the equations for stresses 
and displacements using the identity ei</> = cos¢ + i sin¢. From these equations it is clear that ReZ, y ReZ', 
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andy lmZ' are all zero along the line segment occupied by the crack lxl < a and y = 0. Thus free boundary 
conditions along lines of the crack are provided. Remote from the crack, as lzl approaches infinity,y ReZ' and 
y ImZ' are again zero and ReZ =a. Thus the remote stress field is ay =ax= a and Txy = 0. 

In the limit of small enough values ofr1 ja, taking r = a,r2 = 2a,e = 0, and 82 = 0, Eq. (44) becomes 

ayla -i!!J.. 
Z=--e 2 

y'2i) 
(49) 

This relation can be written as 

Z(() = K I y'2;(, (SO) 

iB1 
where ( = r 1 e = z - a (51) 

and K = K1 = aVJW, (52) 

The Mode I stresses and displacements very close to the crack-tip (as shown in the introductory comments) 
can be derived using Eq. (50), the associated values of Z' and Z, expressing these in vector form as illustrated 
above, and substituting real and imaginary parts (as appropriate) into Eqs. (38) and (39). 

The single stress function approach of Westergaard is conveniently extended to Mode II crack problems by 
assuming (Irwin 1958a) 

<I>= -yReZ 

In terms of Eq. (35), Eq. (53) corresponds to the choices 

The stresses are given by 

<I>= IrnF, X= -z¢, 
1-

¢=-Z 
2 

ax : 2 ImZ ~y ReZ' } 
ay- -y ReZ 
Txy = ReZ- y ImZ' 

The displacements (plane strain) are given by 

2Gu = 2(1 - v) ImZ + y ReZ } 
2Gv = -(1 - 2v) ReZ- y ImZ 

(53) 

(54) 

(55) 

(56) 
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The solution of the Mode II counterpart of the Griffith crack problem is obtained by 

T z ( z) = ---;=====:= VI- (a/z) 2 

(57) 

The remote stresses are Ux = uy = 0, Txy = T. The crack-tip stresses and displacements are again provided by 
Eq. (50) with 

(58) 

The use of essentially the same stress function, Z, to solve Mode I and Mode II problems is applicable to 
many crack stress field problems and can be extended to Mode III by means of the equation 

The stresses are given by 

Gw= ImZ 

Tyz = 
Txz = 

ReZ} 
ImZ 

(59) 

(60) 

Further use of a Z function, which solves a two-dimensional Mode I crack problem in an isotropic material, 
in the solution of two-dimensional crack problems (of similar configuration) in orthotropic and anisotropic 
elastic materials is discussed in Appendix D. To provide relations that remain generally valid, it is most 
convenient to define the three K values as follows [consistent with definitions in Eqs.(l)-(3)]: 

(61) 

where r is the length of a small vector extending directly forward from the crack-tip. 
In the case of Mode I, the invariants used in computing principal stresses are 

(]"X +(]"y = R z 
2 e ' (62) 

For plane strain, the stress field energy density, U, is given by 

(63) 

The corresponding relationships for Mode II are 

(]"X : (]"y = ImZ, Tmax = VIZI2 +llz'l2 -2y Im(z* z') (64) 

(65) 
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Williams (1957) called attention to the possibility that studies of U near the leading edge of a crack might 
be of interest in predicting crack extension behavior. Irwin (1958a) noted that the largest tensile stresses at a 
fixed small distance from a Mode I crack-tip were at 60° to the line of expected crack extension. Either 
viewpoint predicts a tendency for the location of advance separation to cause roughening of a flat tensile 
fracture surface. Of course, the subject of these comments pertains to the fracture process zone and a treatment 
based on stress-strain relations within the crack-tip plastic zone would be more appropriate. 

ADDITIVITY OF CRACK STRESS FIELDS AND K VALUES 

From the additivity oflinear-elastic stress fields and the definitions of K, Eq. (61), several conclusions are 
evident: (a) the addition of a stress field that does not possess an inverse square root stress singularity at the 
crack-tip does not alter the value of K for that crack-tip; (b) when each of several superimposed stress fields 
contributes to the K values, the K values are separately additive for each of these modes; and (c) when several 
loading configurations are applied to the same crack and the Westergaard Z functions for each are known, the 
Z functions can be added together, and the stresses and displacements can then be derived from the total Z 
function using methods discussed in the previous section. 

For illustration consider the Z function 

P Va 2 -b2 

Z(z) = 7r(z- b) ~ (66) 

Using the Mode I value of <I>, Eq. (36), the problem solved is that of a central crack oflength, 2a, opened by 
a pair of splitting forces, P, acting against the crack surfaces at the position y = 0, x = b. The value of K at 
X= a IS 

K-_!__ (i+b 
-V7Wv~ 

If we add a second pair of equal size splitting forces at y = 0, x = -b, the total value of Z becomes 

~ 
() - 2P va -b 

z z - ( 2 2) 
7r z - b v 1- (%) 2 

From Eq. (68), the K value at each crack-tip is given by 

2P a 
K=-·---::::== 

VKa Va2 -b2 

(67) 

(68) 

(69) 

Simple addition shows that Eq. (69) is the sum ofEq. (67) plus the same expression after substitution of -b 
for b inside the radical. Assume next that P = udb. From the additivity rule, the stress field for a uniform 
pressure, u, acting against the crack surfaces can be derived from the following Z function: 

a~ 

() - 2u lva-bdb z z - 2 2 Jrvl- (%)2 0 z -b 
(70) 
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Performing the integration, 

(71) 

Eq. (71) could have been derived by the alternative method of adding a uniform biaxial compression, 
Z = -(}", to the Z value for the Griffith crack (Eq. 42). Because the uniform stress field does not alter K, the 
value of K at each crack -tip is (}" yfmi, as in Eq. (52). If the result needed is the total K rather than the total Z, a 
substantial simplification of the computational task can be expected. For example, elementary methods show 
that 

2 
(72) 

Use of P =(}"db in Eq. (69) and use ofEq. (72) provides (J"yfmi. The simplicity of this computation can be 
compared to the integration indicated in Eq. (70). 

From the additivity principles just illustrated, it can be seen that the solution of a crack stress field problem 
can be visualized as a two-step process: (1) solve the stress distribution problem in a manner satiscying the 
boundary conditions (including applied loads) but with the crack considered absent; (2) add to this stress field 
a stress field that cancels any stresses acting directly across the crack along the line of the crack. In the case of 
a crack occupying a segment of the x-axis, the stresses along this segment which must be reduced to zero are 
(J"y, Txy, and Tyz. Closed-form solutions of numerous infmite-plate crack problems have been obtained in this 
way. Because of the analysis simplifications applicable to Mode III, closed-form solutions can be obtained 
using this method for certain finite plate problems. The two-step approach can be termed a Green's function 
method when a suitable stress function for local pressures or shears on the crack surfaces is available. A 
suitable stress function of the Green's function type is one that can be added to the "no crack" stress field 
without inconsistency with the boundary conditions assumed in the first step of the above method. 

BOUNDARY COLLOCATION METHOD 

The availability of large, high-speed computers permits a variety of numerical methods that can be used 
when K cannot be found from a closed-form crack stress field solution. Boundary collocation can be regarded 
as a relatively simple extension of methods discussed previously. 

Assume that the crack occupies a segment ofthex-axis with the crack-tip atz = 0, and that both of the loads 
and the shape of the plate containing the crack are symmetrical relative to the x-axis. A simple example would 
be a long, single-edge-notched tensile specimen with a crack-simulating notch of length, a, open to the left 
free boundary of the plate, and with uniform tension,(}", applied across the upper and lower boundaries of the 
plate (parallel to the crack). Let W be the width ofthe plate and letL be the length. The stress field is ofMode I 
type and consideration can be given to the use of the stress function Z, where 

(73) 

Using Eq. (38), (J"y and Txy are zero on y = 0 when xis negative. Thus free boundary conditions are exactly 
satisfied along the line of the crack. In addition, it can be observed that Ev = 2 Im(Z) = 0 on y = 0 for 
positive values of x. Since it is desirable to restrict N to a moderate size, free boundary conditions cannot be 
exactly satisfied along x = -a and x = W- a. However, if the values of A 1 , A2 , ••• , AN, and K are such 
that free boundary conditions are nearly satisfied along these lines, the influence of the remaining errors on the 
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stress field close to the crack will be small. A similar consideration applies to the upper and lower boundaries, 
where the desired boundary conditions, ay =a and Txy = 0, can be satisfied only on an average basis. Along 
the lines x = -a and x = W - a, since stress field errors more remote from the crack-tip are of lesser 
importance, it is convenient to choose the boundary collocation points at y values corresponding to equal 
spacing of u1 in the equation y = a tan u1 , where u1 is an angle measured from the negative branch of the x
axis. A similar method for choosing boundary collocation points on x = W - a might be to use 
y = ( W - a) tan u2 , where u2 is measured from the positive branch of the x-axis. The preceding methods are 
continued as a means of selecting boundary collocation points across the line y = L/2. Only the specimen half 
above the x-axis is used because of the symmetry of the problem. 

The solution procedure consists of writing the equations for Txy = 0 and ax = 0 at the points selected along 
x = -a andx = W- a as well as the equations for Txy = 0 and ay = 1 (since K is proportional to a) at points 
selected along y = L/2. If! (N + 1) boundary points are selected, the result is a set of equations, linear in 
terms of the parameters K,A 1 ,A2 , ••• ,AN, and just sufficient in number to permit determination of each 
parameter. However, for a given amount of computing time, it has proved most efficient to limit the value of 
N, select the number of boundary collocation points that is three to four times ! (N + 1 ), and use a least 
squares program to determine the best values for the parameters. Selection of boundary collocation points at 
sharp comers should be avoided. The outputs needed from the computer are the value of K and (usually) the 
value of the y-direction displacement at the crack mouth position commonly selected for clip gage crack 
opening measurements during crack toughness evaluations. A number of calculation refinements can be 
added. However, only the basic plan of the method is presented here. 

SUCCESSIVE BOUNDARY STRESS CORRECTION METHOD 

For illustration, consider a straight, two-dimensional crack occupying the segment of the x-axis, o.;;;x.;;;a. 
Assume that they-axis is the free boundary of a semi-infinite plate and that the stresses remote from the crack 
are ay =a, ax = 0, Txy = 0. From previous comments, the K is not altered if the remote stresses are all taken 
as zero and a uniform pressure, a, is assumed acting inside of the crack. Thus an approximate estimate of K is 
given by K ~ a..Jiii. An appropriate stress field is provided by the Z function of Eq. (71) under the 
assumption that a would be added to real calculation of ay. Along x = 0, the value of Txy from this Z function 
is zero and the average of ax is zero. Successive additions of stress fields which remove the normal stresses, 
ax, along x = 0, and the consequent normal stresses ay along the line of the crack, can be visualized as an 
infmite repetition of additive stress fields (Irwin 1962a). Each stress removal along the line of the crack 
provides a corrective contribution to the value ofK. If the ax stresses onx = 0 from the Z function ofEq. (71) 
are termed ax( a), the calculation can be compactly summarized by a pair of integral equations as follows: 

P(Yo) = CTx(o-) + 1a q(b)f(b,yo)db (74) 

q(b) = 100 
p(yo)g(b,yo)dyo (75) 
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where 

(76) 

(77) 

The total K is given by 

r:::::.{ 21a q(b)db } 
K=yitU (]"+- ~ 

7r o v a2 - b2 
(78) 

and turns out to be larger than 1JV7fii by about one-eighth. For calculation purposes it is convenient to choose 
IJ = 1 (since K is proportional to iJ), b = a sin a, y0 = a tan {3, and to use equal intervals of a and {3 in 
conducting the necessary numerical integrations. The calculation is started by using of IJx ( IJ) for p(yo) in Eq. 
(75). The resulting q(b) is used in Eq. (74) to obtain an improved value of p(yo) for use in Eq. (75). A 
calculation of K from Eq. (78) is made for each new value of q( b) and the computing process is stopped when 
the change of K becomes smaller than some selected fraction of 1JV7fii. Similar calculation plans are 
applicable if the initial "no-crack" stress field is due to thermal stress induced by a uniform rapid cooling along 
x = 0 (Lachenbruch 1961 ). 

The use of the preceding method for strip problems is more complex. Even for problems having symmetry 
relative to the midline of the strip, convenient stress removal functions for the parallel free boundaries of the 
strip are not available. Nevertheless, a number of problems of this type have been solved (Tada 1972b) using 
a modification of the method. The main advantage of the successive stress removal method is rapid 
convergence of the total K estimate. In compensation, the programing tasks may be substantially greater than 
would be encountered using the boundary collocation method. 

K ESTIMATES FROM FINITE ELEMENT METHODS* 

Although finite element methods are commonly used for practical stress analysis problems, special 
planning is necessary for efficient use of such methods to determine K for two-dimensional crack problems. 
For three-dimensional crack problems-for example, a part-through surface crack-even with expert 
planning, an accuracy of 10% is not easily obtained. The comments given here are mainly limited to two
dimensional problems. 

Two kinds of procedures have been used with considerable success. In the first of these, assuming the stress 
state is caused by externally applied loads, the method is directed toward the computation of the total stress 
field energy, Ur =! l:P;b.;, for each of a series of crack sizes with the loads, P;, held constant. In the 
preceding equation, b.; is the displacement parallel to P; of the local region of load application, If 8A is the 

• Historically, this was written for the First Edition in 1973. Progress in numerical methods continues at a rapid pace. 
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increase of the severed area corresponding to a crack size increment and if 8Ur is the increase of Ur for that 
increment, K can be obtained from the equation 

K2 = Q =oUr=~"- p. Mi 
E 8A 2L.J ' 8A 

This procedure simply models an experimental compliance calibration in terms of finite element computations 
of the load displacements, ~; (Watwood 1969). The advantage of the procedure is that refinement of the finite 
element mesh toward very small element sizes near the crack-tip has little influence on the displacement 
differences, 8~;, remote from the crack and is therefore not required. In compensation, the computations must 
include a range of crack sizes and reliable results require careful study of the accuracy of the load 
displacement differences. 

Procedures that use very small elements close to the crack-tip have yielded values of K with an accuracy of 
better than 2%. Experience is necessary in developing approximate methods of size reduction of the finite 
elements close to the crack-tip and in choosing the stiffness matrix for this region. Generally, K values have 
been determined by positioning computed values of an extensional stress at the element centroid; plotting 
values of stress times the square root of distance from the crack-tip, r, against r; and extrapolating tor = 0. A 
discussion of finite element methods for K determination by Kobayashi (1973) suggests that, in terms of 
computational efficiency, using crack line displacements at nodal points close to the crack-tip along with the 
displacement equations valid for the crack-tip region possesses advantages over procedures based on the 
stress equations. 

Currently, K estimates from finite element methods are at an intermediate stage of development. Trials of 
calculations of g in terms of the J-Integral using finite element methods may provide substantial advantages. 
In addition, the fact that the stress and displacement patterns at the crack-tip are known and that approximate 
first-order corrections to these patterns can be estimated has not been fully exploited (Wilson 1972). The latter 
method may be essential as a means for obtaining accurate K estimates for three-dimensional crack problems 
within reasonable limits of computational expense (Swedlow 1972). 

ADDITIONAL REMARKS FOR PART I 

A. Unified Formulation for In-Plane Two-Dimensional Problems 

It is well known that all formulas for in-plane, two-dimensional problems can be expressed in common 
forms for plane-strain and plane-stress conditions by choosing G and one other elastic constant which is 
defined in terms of v according to the condition. 

The expression: G = E/2(1 + v) can be used commonly for both plane-strain and plane-stress conditions. 
For the second constant, "'defined as follows is frequently used. 

{ 
3- 4v 

K= i+~ 
plane strain 

plane stress (79) 

A choice of a neater combination, however, is ( 1 - v) for plane strain and 1/ ( 1 + v) for plane stress. Two 
constants, a and f3 (!3 = 1/a), are defined in this handbook as follows for convenience: 

1 { 2(1 - v) 
{3 =; = 2/(1 + v) 

plane strain 
plane stress 

(80) 
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A complete, unified formulation in terms of stresses in the x,y Cartesian coordinate system, for example, is 
summarized as follows. 

Equilibrium equations: 

Compatibility equation: 

Stress-Strain relations: 

where 

2GEx = CY*- CYy 

2Gcy = CY*- CYx 

2G"(xy = 2Txy 

CY* = (J(CYx + CYy )/ 2 

F(X, Y) = body force 

(81) 

Note that lh = v( <h + O"y) in plane-strain condition or Ez = -v( O"x + O"y) / E in plane-stress condition [see 
Eqs. (25) and (26)] is determined simply as a by-product of the analysis. 

Various distinct expressions are used throughout this handbook for plane strain and plane stress. All of 
these pairs of expressions can be unified to single forms with the use of G and a or (3. Some examples of 
unified expressions are 

a. Eq. (79) : K = 2(3- 1 

b. 

c. 

Eq. (39): 2Gu = ((3- 1) ReZ- y ImZ } 

2Gv = (3 ImZ- y ReZ 

Also refer to Eq. (1) and pages 1.3b and 1.3c. 

Eq. (18) : E' = 4aG 

d. Page 16.3 : 

1-a 
v=±--CYh 

G 

(79a) 

(39a) 

(18a) 

(82) 

Also note that a= 1/2(1 - v) repeatedly appears in solutions for many three-dimensional problems. See, 
for example, pages 23.7 and 24.1. 

B. On Completeness of Westergaard Single-Function Method for Analysis of Cracks 

The single stress function approach of Westergaard has a certain deficiency that only affects the elastic field 
in the absence of cracks. For the analysis of the contribution to the elastic field by the presence of cracks, the 
single-function method is complete. 

The deficiency consists in the possible presence of non-zero ZII even in the so-called Mode I field, for 
example, in the absence of cracks (Okamura 1976), as illustrated here in the analysis of a simple example. 
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The subscripts I and II are used here, as in the solution pages, to represent Mode I and Mode II fields, 
respectively. 

A general Airy stress function <I> in terms ofWestergaard stress functions is given, combining Eqs. (36) and 
(53), by 

(83) 

The corresponding stresses and displacements, combining Eqs. (38) and (55) and Eqs. (39) and (56), 
respectively, are given by 

{ 

(]"x } { ReZ1 - y ImZ~ } { 2 ImZII + y Re~; } 
(]"y = ReZ1 + y ImZ1 + -y ReZ11 
Txy -y Rezj ReZ11 - y Imz; 

(84) 

2G{ u} _ { ( (3- 1) ReZ1 - y ImZ1 } + { (3 ImZII + y ReZII } 
v - (3 ImZ1 - y ReZ1 -((3- 1) ReZII- y lmZII 

(85) 

where Z1 (z), Z1 (z), etc., are abbreviated to Z1 , Z1 , etc. 
Consider, for example, an infinite plate subjected to (a) uniform (biaxial) tension Ux = uy = u at infinity, 

Fig.lO(a), and (b) uniaxial tension u = u at infinity, Fig.lO(b). Both elastic fields are symmetric with respect 
to x-axis and therefore are Mode I fields. Nevertheless, ZII for (b) is not zero, but ZII = -i(u/2). That is, the 
Westergaard stress functions and, for reference, the Airy stress functions corresponding to Fig. lO(a) and {b) 
are given by 

(86a) 

(86b) 

These Westergaard functions, Eqs. (86a) and (86b ), obviously from Eq. (84), yield identical stresses on the 
x-axis (the presence ofnonzero ZII in (b) has no bearing on them), namely, 

(]"y(x, 0) = (]", Txy (x, 0) = 0 (87) 

Therefore, to make a segment lxl~ a, y = 0 traction-free surfaces, the stress field shown in Fig. 11 must be 
superimposed on those ofFig.lO. The Westergaard function corresponding to Fig.ll has been obtained in the 
preceding section, that is, Eq. (71). 

(71) 

As readily observed from the analysis, as long as the crack-absent stress distributions to be removed over 
crack segments are identical, the contributions to the elastic field by the presence of cracks are identical 
regardless of the difference in the overall elastic fields, and cracks in Mode I fields contribute to Z1 only. 
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ZI.(z) = cz 
x Z1(z.) =-tfz 

Fig. 13 
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Fig. 14 
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The resultant Westergaard stress functions after the cracks are introduced, Fig. 12(a) and {b), are 
determined simply by superimposing Eq. (71) on Eqs. (86a) and (86b). 

a 
(a)ZI(z)= , Zn(z)=O V 1- (ajz)2 

(88a) 

a a 
(b)ZI(z)= , ZII(z)=-i-Vl- (a/z)2 2 

(88b) 

However, adjustment for (J"x based on ZI alone is often made in the manner described in the paragraph 
following Eq. (71) without introducing ZII. 

An additional example of nonzero ZII in Mode I field and an example of nonzero ZI in Mode II field are 
given next. 
(c) An infinite plate subjected to in-plane bending (J"y =ex at infinity (Fig. 13): 

(89) 

(d) An infinite plate subjected to uniform shear Txy =Tat infmity (Fig. 14): 

(90) 

Note that ZII = T alone yields the correct stress field and therefore the correct Airy stress fun~ion <J?. The 
presence of nonzero ZI may seem trivial. However, although ZI does not contribute to <J? [ <J? I = ReZ I + y ImZ I 
in Eq. (83) cancels out], ZI does contribute to displacements, Eqs. (85), andZII andZI ofEq. (90) together yield 
the correct elastic field (symmetric with respect toy=± x). 

Again, ZII in (c) and Z1 in (d) have no significance in the analysis of cracks. 

C. Effect of Surface Interference of Partly Closed Cracks 

In Mode I displacement field, when there is a crack-tip with a negative K1 , the crack opening displacement 
near that tip is also negative and thus the material would "overlap." Such overlapping is physically 
unacceptable and, consequently, solutions involving negative K1 are not valid by themselves. However, these 
negative K1 and negative openings can be directly superimposed on the positive values resulting from other 
applied loads, as long as the resultant K1 remains positive and the surface overlapping is eliminated. In the 
subsequent solution pages, the effect of crack surface interference is ignored for the most part, and negative K1 

and negative opening displacements are given as solutions. These negative values, therefore, must be treated 
accordingly. 

When the surfaces of cracks containing the tips with negative K1 entirely close, the resulting geometric and 
loading configuration would be obvious, and the analysis can be made in a usual manner for the final crack 
geometry. 

Examples of such situations are: 

a. A double-edge cracked strip under in-plane bending (page 11.5) 
The resulting configuration is effectively a single-edge cracked strip with a crack on the tension side 
only, Fig. 15a (page 2.13). 
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b. An infinite plate with opposing semi-infinite cracks (leaving a finite net ligament) subjected to a finite 
in-plane bending moment (page 4.10) 
When the crack on the compression side totally closes, the crack on the tension side also loses its 
significance. The resulting configuration is simply an unloaded plate, Fig. 15b. 

For these cases, no further discussion is needed here. 
When, on the other hand, the crack surfaces only partially close, the interference of closure does affect the 

resulting geometric configuration and thus the overall elastic field. The geometry of such a crack is not readily 
knowable beforehand. For example, the length ofthe closed portion of the crack cannot be determined without 
analysis. 

Examples of such situations are: 

c. A strip with a very deep single-edge crack under in-plane bending (page 2.13 with the bending moment 
reversed) because the crack-tip is now on the tension side, Fig. 15(c), the crack surfaces on the 
compression side close smoothly (K1 = 0) only partly, and the edge-cracked strip becomes effectively a 
strip with an internal crack, the resulting geometry of which is not immediately known, Fig. 15(c). 

d. An infinite plate with a fmite crack subjected to in-plane bending about the symmetric axis of the crack 
(i.e., linearly varying !Jy at infmity) (pages 5.18/18a/18b ). (i) in Fig. 15(d) is the crack profile of page 
5.18a where the effect of the crack surface contact is ignored. That is, K1 at the left tip is negative and the 
left half of the crack surfaces overlap. As discussed earlier, this solution may be directly superimposed 
on solutions for other loadings when the resulting configurations are physically acceptable (K1 ;;:> 0 at 
the left tip and no surface overlapping). (ii) is the crack profile when the effect of crack surface contact is 
accounted for (page 5.18b, which is to be obtained subsequently). Again, the length of the closed 
portion and therefore the fmal geometry of the crack is not known beforehand. Consequently, before 
determining (by superposition in particular) K1 at the right tip and the crack opening profile, and so on, 
including the effect of surface interference, the final crack geometry must be known. 

For some analyses and discussions on the effect of surface interference of partly closed cracks, see Seeger 
(1973), Paris (1975b), Bowie (1976a,b), and Gustafson (1976). For additional discussions related to such 
surface contact, see Westergaard (1939) and also Appendix G of this handbook. 

Next, the effect of crack surface interference is analyzed in detail for example (d). From the analysis of this 
simple example, various general characteristics of the effect of surface contact, and some features specific to 
the example, are observed, some of which are well known, or physically or intuitively obvious. The approach 
is in essence to focus on the portion of the crack that remains open and to remove the stress singularity (K1 ) at 
the point of separation of the closed surfaces by using the usual superposition method. 

Let us take, for convenience, the (x,y) coordinate system and z = x + iy with the origin at the midpoint of 
the crack which remains open, as shown in Fig. 16. Other quantities specifying the geometric and loading 
configurations are also defined in Fig. 16. The coordinate system and dimensions associated with the original 
configuration of the crack are indicated with a subscript "0." The right crack-tips in the two systems, x = a and 
x0 = a0 , are common, but the position of the left tip, x = -a, under loading is not known. 

The position of the left tip, that is, the point of separation of surfaces in contact, x = -a, is determined from 
the condition that the resultant K1 vanishes at this point. Refering to Fig. 16, the linearly varying stress 
!Jy = p(x0 / a0 ) in the original system, line (A), is obtained by superposition of a linearly varying stress 
!Jy = p'(x/a), line (B), and a uniform stress !Jy = p"(p' + p" = p). Therefore, all that is required for the 
analysis are the solutions found on pages 5.1/1a and 5.18/18a applied to the opened portion, -a~ x ~a. 

The resultant K1 are, by superposition, 

(91) 
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Klx=-a = 0 gives 

P" =p'/2 (92a) 

and correspondingly 

p' = 2p/3 (92b) 

Klx=+a = P 1VJW = (2p/3)VJW (92c) 

In addition, the length of closure 

£=a= 2ao/3 (92d) 

is now obvious from the geometry ofFig.16. That is, the left one-third of the original crack closes or, in other 
words, the one-third of the crack on the compression side remains open (ac = a1 = a0 j3). These relations are 
summarized at the bottom of Fig. 16. 

The complete set of expressions resulting from superposition of pages 5.111a and 5.18/18a after 
incorporating the preceding results are now readily obtained. They are summarized in terms of z = x + iy and 
a in Fig. 16 as follows: 

p m.+a Z1(z) =-(2z-a) -
3a z- a 

(93a) 

(93b) 

(93c) 

p fX+G, 
o-y(x,O) ="3(2x-a)y~--

x::=;-a1x>a a x-a 
(93d) 

4pa ( x) RJx)2 
2v(x, 0) = - 1 1 +- 1 - -

lxl<::a 3E a a 
(93e) 
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2 
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3 E1 

P'=~P 
P"= tP 

(93f) 

These expressions are converted to those in terms of the original system z0 = x0 + iy0 and a0 by replacing 
a by 2a0 /3, Eq. (92d), and z by z0 - a/2 = z0 - a0 /3, then omitting the subscript "0." The complete 
expressions corresponding to Eqs. (93) and the resulting geometry of the crack are presented on page 5.18b. 
Page 5.18b is directly compared with page 5.18a for the effect of surface interference. Discussions of the 
comparison will follow. 

The following observations are based on the results of the analysis of the present example. Some of them 
are general characteristics of surface interference and others are specific features of the present example. 

a. The stress variation on the closed portion of the crack near the point of separation of the closed 
surfaces is in the form of a parabola (ex /h), and the separation profile of the surfaces near that point 
is in the form of a semicubical parabola (ex /h), as is well known (Westergaard 1939). 

b. Once crack surfaces close and remain closed, the presence or absence of cracks beyond the point of 
separation is immaterial in the subsequent analysis of cracks that remain open. 
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c. K1 = 0 at a tip ensures fmite stresses and a smooth separation of the surfaces at that tip. However, 
K1 = 0 by itself does not necessarily require the stresses to be zero at the tip, as observed from the 
preceding analysis (e.g., page 5.18b, "ay(x, 0) -effect of crack" indicated by a dashed line) and the 
(Dugdale) yield strip model analysis (pages 30.1 - 32.6). See f. below for further discussion. 

d. The crack surface interference naturally increases K1 at the open end of the crack and the crack opening 
area. For the present example, K1 is increased to 2(2/3)312 = 1.089 times the corresponding value with 
the surface overlapping permitted, and the crack opening area becomes 4n/9 = 1.396 times that of the 
opened (right) half. See pages 5.18a and 5.18b. 

e. A crack-tip located in a compressive region does not necessarily close; that is, K1 remains positive if the 
other tip remains open K1 > 0. For the present example of linearly varying ay in Fig. 16, when the left 
tip is located in x0 > -a0 /3, obviously K1 > 0, and therefore the left tip located in the compression 
region -a0 /3 < x0 < 0 will remain open. 

f. As discussed in b., the overall solution in terms of Z(z) after cracks are introduced is given (for Mode I) 
by 

Z1 (z) = Z1 (z) +Z1 (z) } no crack due to crack 
Z11(z) = Z11(z) k no crac 

(94) 

where Z1 (z)due to crack is determined by the integral of Eq. (70) or the corresponding integral for other 
crack configurations. As observed from the example of Eq. (71), the integrals generally result in 

Z1(z) =Z1(z) . -ZI(z) } due to crack functwn of geometry no crack 

Zn(z) due to crack=O 
(95) 

Thus, the resultant field, Eq. (94), is always 

Z1(z) =Z1(z) . } functwn of crack geometry 
Zn(z) = Zn(z) k no crac 

(96) 

ZII(z) may be disregarded here because it has nothing to do with the presence of the cracks. 
Therefore, it should be noted that the solution given on page 5.18 is strictly for the overall situation of 

page 5.18a. That is, for page 5.18, Z1 (z)no crack(= pzja) and ZII(z)no crack(= -ipz/2a) [Eq. (89) with 
c = p /a] are disregarded. 

Similarly, for the present example of page 5.18b, the integral of Eq. (70) results in 

p ( 2a) J= + a/3 p zl z -- z-- -----z 
( ) due to crack- a 3 z - a a (97) 

Z11(z) = 0 
due to crack 
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and correspondingly 

a"y( -a/3, 0) = p/3 =/= 0 (98) 

although K1 at the cuspidal tip, x = -a/3, is zero, as discussed in c. above. In addition, it may be 
interesting to note that 

O"y(x,O) > 0 

x.;;;- a/3 
(99) 

that is, uy(x, 0) on the closed portion of the crack, -a~x~-a/3, and beyond the left tip, x < -a, is in 
tension rather than compression until the remote stress is superimposed. Refer to the distribution of 
uy(x, 0), x~-a/3, found on page 5.18b. 

The final result presented on page 5.18b is the superposition ofEq. (97) and Eq. (89) with c = pfa, 
that is, 

p ( 2a)jz+a/3 p Z (z) =- z-- --, Z (z) = -i-z 
1 a 3 z- a II 2a 

(100) 

ZII(z) is not included on page 5.18b. 
g. It is obvious that cracks having tips with negative K1 totally close, partially close with cuspidal ends, or 

remain open. It is also obvious, from the analysis of the example, that the final geometry of cracks is 
unique; that is the positions of the cuspidal ends are uniquely determined as long as the applied load is 
propotional, regardless of the level of the applied load. The "proportional loading" here is in a sense 
similar to that used in the theory of plasticity, but less restrictive. It is sufficient if uy(x, 0) in the absence 
of cracks is proportional (actually, if it is proportional only on the segments corresponding to the 
portions of cracks that eventually remain open).For the linearly varying O"y at infinity (in-plane bending), 
the proportional loading is realized when the position of zero crossing of O"y (i.e., the axis of moment) is 
fixed. Referring to Fig. 17, let us assume for simplicity that only one right crack-tip is on the tension 
side. Fig. 17a is obvious; both tips of the right-most crack are in the tensile region. The presence of 
cracks in the compressive region is immaterial. In Fig.17b, the left tip of the crack is in the compressive 
region, but the length on the compression side is less than one-third of that on the tension side 
(ac < atf3), and both tips still remain open, as discussed in e. above. The presence of cracks ahead of 
the left tip is immaterial. When ac ~atf3, Fig. 17c, a cuspidal end is always formed at x = -atf3. That 
is, its position is uniquely determined by the length on the tension side, regardless of the level of the 
applied load, or the presence or absence of cracks in x.;;; -at /3. Only the crack opening profile changes 
proportionally to the applied load. 

h. The analysis of the crack surface interference in three-dimensional configurations will be much more 
involved and would require a numerical approach. 
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PART 

II 

STRESS ANALYSIS 

RESULTS FOR 

COMMON TEST 

SPECIMEN 

CONFIGURATIONS 

0 The Center Cracked Test Specimen 

0 The Double Edge Notch Test Specimen 

0 The Single Edge Notch Test Specimen 

0 The Pure Bending Specimen 

0 The Three-Point Bend Test Specimen 

0 The Compact Tension Test Specimen 

0 The Round (Disc-Shaped) Compact Specimen 

0 The Arc-Shaped (C-Shaped) Specimen 

0 Other Common Specimen Configurations 

0 Electrical Potencial Calibraton 

39 
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THE CENTER CRACKED TEST SPECIMEN 

A. Stress Intensity Factor 

Numerical Values of F(a/b) 

(Isida 1962, 1965a, b, 1973) 2 

Isida's 36-term power series of (alb) (Laurent series 
expansion of complex stress potential, 1973) gives 
practically exact values of F(alb) up to a;b = 0.9. 
Numerical values of F(alb) are shown in the following 
graph and table. 

-'t ...., 
LL 

~ne 

t 
0.6 

*See Note 2 

2.1 

t t t(j t t 

---t---
1 

I h 

% F(%) 

0.0 1.0000 

0.1 1.0060 

0.2 1.0246 

0.3 1.0577 

0.4 1.1094 

0.5 1.1867 

0.6 1.3033 

0.7 1.4882 

0.8 1.8160 

0.9 2.5776 

1.0-2-/ v1-% ** V7r 2 -4 

**Exact Limit (Koiter 1965b) 
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Empirical Formulas 
a. Accuracy 
b. Method of derivation, reference 

a. Better than 5% for a;b :::; 0.5 

F(%) = 
2b 1ra 
-tan
Ira 2b 

b. Approximation by periodic crack solution (Irwin 1957) 

2 3 
F(%) = 1 + 0.128(%)- 0.288(%) +1.525(%) 

a. 0.5% for a;b:::; 0.7 
b. Least squares fitting to Isida's results (Brown 1966) 

c:rra F(%) = v '"'~2b 

a. 0.3% for a;b :::; 0.7, 1% at a;b = 0.8 
b. Guess based on Isida's results (Feddersen 1966) 

F(a;,) = 1- 0.5(%) + 0.326(%) 
b y'1-% 

a. 1% for any a;b 
b. Asymptotic approximation (Koiter 1965b) 

2 

F(a;,) = 1- 0.5(%) + 0.370(%)2 -0.044(%) 3 

b y'1-% 

a. 0.3% for any a;b 
b. Modification of Koiter's formula (Tada 1973) 

{ 2 4} c:rra F(%) = 1- 0.025(%) +0.06(%) y sec2b 

a. 0.1% for any a;b 
b. Modification of Feddersen's formula (Tada 1973) 
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NOTES: 1. Finite height configuration (hlb finite) is given separately. When hlb 2: 3, the plate is practically regarded as an infinite 

strip as far as the effects of hlb on K are concerned (Isida 1971a). 

2. For Mode II configuration (II), the correction factor is identical to F(alb) in Mode I. 

KII = TV1ffi F(%) 

For Mode III configuration (III), the following formula is exact: 

2b 1ra 
Km = TcV1ffi -tan-

7ra 2b 

Other Methods and References 
1. Compliance Method: Forman 1964 
2. Fourier Transform- Integral Equation: Sneddon 1971b 
3. Finite Element Method: Mendelson 1972, Yamamoto 1972 
4. Boundary Collocation Method: Bowie 1970a 
5. Integral Equations - Successive Stress Relaxation: Tada 1971, 1972a, b 

(See also pages 2.24, 2.26, 2.35, 2.36, 7.1, 11.1, 11.2, 11.3, 11.4, 18.1, 18.2, 18.3, 19.4, 20.1, 20.2, 
20.3,etc., for related solutions and corrections for various effects.) 
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B. Displacements 

Crack Opening at Center 

The following formula has better than 006% accuracy for any a;b 0 

vi(%) = -0°071 - oo535(%) + 00169(%)2 - ooo90(%)3 

Additional Displacement at Remote Points (hfb) ~ 3 Due to 
Presence of Crack 

(]" 

f:lcrack = f:ltotal - f:lNo crack = f:ltotal - E 0 2h 

Crack Opening Area 

A = f:lcrack 0 
( 2b) 

The following formula has better than 006% accuracy for any a;b 0 

t t to-t t 
j_ll/2 -- --

1 
8 

~~ b-
I 

I 
----.ll/2-

• I i(j. • 

2 3 4 5 1 
V2 (%) = -1.071 + 00250(%)- Oo357(%) + 00121(%) - Oo047(%) + Oo008(%) - 1.071 (%) £n(1- %) 

Method of Derivation: Paris' equation based on energy principles (Paris 1957) (see Appendix B) 
Reference: Tada 1973 
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NOTES: 1. E' = E for plane stress and E' = E/ (1 - v') for plane strain. 
2. Uniform pressure O" applied on the crack surfaces results in the same crack opening 8 and remote displacement !:lcrack· 
3. Limiting values of v; (%) and V, (%) at%--> I are exact. 

21r I 
V1 (%--> 1) = Vz (%--> 1) = - 2-Rn"}"tll 7r -4 - tb 

4. For Mode II loading (II), the displacements (II') are 

8 = 4Ta V (at) 
E' I tb 

where V, and V, are identical to those in Mode I. For Mode III loading (III), the displacements (III') are given by 

2 1 -1 ( 1ra) 
V1 (%) =:;;:%cosh sec 2b 

2 1 ( 1ra) Vz (%) =- -£n sec-7r% 2b 

---h-
. A/2 A/2 ---r--
'SA 

8~2 
Ish 

I;~ 
I I 

_j_ __ 
--$----

o/2 A/2 

(li') (ill') 
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21T' 
--'14= \. 0'7\ 
li-
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THE DOUBLE EDGE NOTCH TEST SPECIMEN 

A. Stress Intensity Factor 

Numerical Values of F(afb) 

Bowie's results (h/b = 3.0, mapping function method) 
have 1% accuracy and Yamamoto's results (h/b = 2.75, 
fmite element method) have 0.5% accuracy for 
0.2 <alb< 0.9 (Bowie 1964a; Yamamoto 1972). 

1· \22 -#. 
\,J 

h 

a b_j__b 
. 

I 
h 

l 

u.. f.0~-+----=~---11----+---+---+---+--+---+--~ 1.0 

~ 
o.St---t---1---t--+--1-....:::::::...~~i---+---+---+---IO. I 

t o Bowie 

• Yamamoto 

*See Note 2 
(See also pages 2.32, 2.33, 2.34, 11.5, 15.1 etc., for corrections and various effects.) 

2.6 
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Empirical Formulas 
a. Accuracy 
b. Method of derivation, reference 

a. Better than 5% for a;b > 0.4 

F(%) = 
2b 1ra 
-tan-
7ra 2b 

b. Approximation by periodic crack solution (Irwin 1957) 

2 3 
F(%) = 1.12+0.203(%) -1.197(%) +1.930(%) 

a. Better than 2% for a;b:::; 0.7 
b. Least squares fitting to Bowie's results (Brown 1966) 

2 3 
F(a!b) _ 1.122- 0.561 (%) - O.D15(%) +0.091 (%) 

j, -------~~-v~1=-=a~~~----~~ 

a. Better than 2% for any a;b 
b. Asymptotic approximation (Benthem 1972) 

( 4 1ra) F(%) = 1 +0.122cos 2b 

a. 0.5% for any a;b 
b. Modification of Irwin's interpolation formula (Tada 1973) 

2b 1ra 
-tan-
7ra 2b 

2 3 4 
F(a/. ) = 1.122- 0.561 (%) - 0.205(%) +0.471 (%) -0.190(%) 

b y1-% 

a. 0.5% for any a;b 
b. Modification of Benthem's formula (Tada 1973) 
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NOTE: 1. Both hlb = 3.0 (Bowie) and%= 2.75 (Yamamoto) are considered effectively infinite. 
2. For Mode II configuration (II), the correction factor is identical to F(a/b) in Mode I. 

For Mode III configuration (III), the exact formula is 

2b 1W 
KIII = Tc ..j1W. - tan -

1W 2b 

Crack Opening at Edges 

t to-+ + 

--1~-1 
A/z I S h 

3 ~:t::r--t--t=E=$_j_$1-

B. Displacements 

The following formula has better than 2% accuracy for any a;b: 

1 { (. 7W) (. 1ra)3 (. 1ra) 5 -1 ( 7W)} V1 (alb) = G~) 0.454 sm lb - 0.065 sm lb - 0.007 sm lb +cosh sec lb 
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Additional Displacement at Remote Points (hfb >3) Due to Presence of Cracks and Crack 
Opening Area 

(}" 

llcrack = D. total - D. no crack = D. total - E · 2h 

D. _ 4ua (a/.) 
crack - £' Vz b 

A = llcrack · 2b 

The following formula has better than 1% accuracy for any a;b 

1 { ( 1ra)4 ( 1ra) 8 ( 1ra)} V2 (%) = (;~) 0.0629- 0.0610 cos lb -0.0019 cos lb +t'n sec lb 

Reference: Tada 1973 
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Method of Derivation: Paris' equation based on energy principles (Paris 1957) (See Appendix B) 

NOTE: 1. E' = E for plane stress 
E' = E/(1 - v') for plane strain 

2. Uniform pressure O" applied on the crack surfaces results in the same crack opening 8 and remote displacement Ll crack-
3. Limiting values of V1 and V, at a;b --> 0 and a;b --> 1 

V1 (% __, o) = 1.454, Vz (% __, o) = o 

4. For Mode II loading (II), the displacements (II') are 

4Ta 
Ll =E'Vz(%) 

where V1 and V, are identical to those in Mode I. 
For Mode III loading (III), the displacements (III') are 

2 1 -1 ( 1ra) V1 (%) =- - cosh sec-7r% 2b 
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\.45tt 
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THE SINGLE EDGE NOTCH TEST SPECIMEN 

A. Stress Intensity Factor 

Numerical Values of F(afb) 

The curve in the following figure was drawn based on the 
results having better than 0.5% accuracy. 

Methods and References 
a. Boundary Collocation Method (hfb > 0.8): Gross 1964 
b. Mapping Function Method (hfb = 1.53): Bowie 1965 
c. Green's Function Method (hfb > 1.5): Emery 1969, 1972 
d. Weight Function Method: Bueckner 1970, 1971 
e. Asymptotic Approximation: Benthem 1972 
f. Finite Element Method (hfb = 2.75, 1.0): Yamamoto 1972 

{.2 

u... 
~ 1·1 

~ 
.!.. \.0 

\.122 
\. 

"" r-..... 

I I I 

'3/2 < 1- a4) Fe o/b) 

---.......... -

2.10 

t tl) t -
1-- ---- - 1--""T"-

h 

I 
....,._ __ b ----+-1 h 

I 

----L - -!---"~--

~ 

----~ ----
o.2 0·4 o.s l·O 

NOTE: 1. Load is applied along the centerline of the strip at the crack location (or uniform pressure on crack surfaces). 
2. The effect of hlb is practically negligible for hlb 2: 1.0. 

(See also pages 2.13, 2.16, 2.27 to 2.31 etc., for various corrections and effects.) 
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Empirical Formulas 
a. Accuracy 
b. Method, reference 

2 3 4 
F(%) = 1.122-0.231 (%) + 10.550(%) -21.710(%) +30.382(%) 

a. 0.5% for a;b ::; 0.6 
b. Least squares fitting (Gross 1964; Brown 1966) 

(a; ) _ ( a; )4 0.857 + 0.265 % 
F ;b - 0.265 1 - ;b + 3/ 

(1- %) 2 

a. Better than 1% for a;b < 0.2, 0.5% for a;b 2 0.2 
b. Tada 1973 

F(%) = 

3 

2b Jra 0.752 + 2.02(%) + 0.37 ( 1 -sin lb) 
--tan--·------------~--~---=~ 
7ra 2b cos 7ra 

2b 

a. Better than 0.5% for any a;b 
b. Tada 1973 ------

B. Displacements 

Crack Opening at Edge 

Gross' results (Gross 1967, Boundary Colloca
tion Method) are expected to have 0.5% accuracy 
for 0.2 ::; a;b < 0.7. An empiricalformula with 1% 
accuracy for any a;b is (Tada 1973) 

1.46 + 3.42( 1- cos lb) 
v, (%) = 2 

(cos~) 

I 
I 

1 
t ~Q..,. 

I 

~ 
I 
I 

1--- --

T 
h 

h 
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Additional Remote Point (hfb 2 1) Displacement due to Crack (Along the Centerline at the 
Crack Location) 

llcrack = lltotal - llno crack 

ll _ 4cm (a;) 
crack - E'. v2 lb 

The following formula has better than 1% accuracy for any a;b: 

2.0 

~ l.5 
co~· 

* ' 
( ,_ %)'l. v, (o/b~ v 

I - ..........__. 
~ -"' ;> J.O 

(.II. 

~ 
-~ 
t 

0.5 

'2. 

(l-%)·V1C%~ 

v---~ __...., 
~ 
~ 

~ 0 
o.4 o.& 0·2. 
-~ .. 0./b 

Method: Paris' Equation (Paris 1957) (See Appendix B.) 
Reference: Tada 1973 

/ 
/ 

v 
t' 

o Gross 

/ 
v 

v , 

o.s 1·0 
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THE PURE BENDING SPECIMEN 

A. Stress Intensity Factor 

Numerical Values of F(a/b) 

The curve in the following figure was drawn based on the 
results having better than 0.5% accuracy. Also used for four-point 
bending. 

1.0 
~·· 
\ 

\ '3/z 

'\ (1-%) FC%) 
r\.. 

" " -
t "~ 

!'...... 
............... 

o.4 

0.2 0·~ ClL 0-6 --,b 
Methods and References 
1. Singular Integral Equation, Bueckner 1960 
2. Boundary Collocation Method (hlb ~ 2), Gross 1965a 
3. Weight Function Method, Bueckner 1970, 1971 
4. Green's Function Method (hlb ~ 1.5), Emery 1969 
5. Asymptotic Approximation, Benthem 1972 

h 

a I 
t---b----t h 

-_l_ --I---'-
-a-

1.0 

o.s 

0.6 

---r-- -- 0.'37~ 

o.s 1.0 
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Empirical Formulas 
a. Accuracy 
b. Method, reference 

2 3 4 
F(%) = 1.122- 1.40(%) + 7.33(%) -13.08(%) +14.0(%) 

a. 0.2% for a;b ::; 0.6 
b. Least squares fitting (Brown 1966) 

F(%) = 

4 

2b Jra 0.923 + 0.199 ( 1 -sin 2h) 
-tan- ------;;;,,.,-----c::..:....:'-
7ra 2b cos 7ra 

2b 

t--- --
I 

a. Better than 0.5% for any a;b 
b. Tada 1973 I 

B. Displacements t 
t --a~· 

I 
Crack Opening at Edge 

8= ~~V(%) b 
I 
I 

Gross' results (Gross 1967, Boundary Collocation Meth
od) are expected to have 0.5% accuracy for 0.2 ::; a;b ::; 0.7. 
An empirical formula with 1% accuracy for any a;b is (Tada 
1973) 

------

2 0.66 
V(%) = 0.8- 1.7(%) + 2.4(%) + 2 

(1-%) 

Additional Remote Point (h/h > 2) Displacement (Rotation) Due to Crack 

()crack = ()total - ()no crack 

()crack = ~~ S(%) 

2.14 

h 

h 
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The following formula has better than 1% accuracy for any a;b . 

2 

S(%) = C ~~1J {s.93 -19.69(%) +37.14(%)2 -35.84(%)3 +13.12(%) 4
} 

*'· ~ -V) 
('4~1-4 

l. J.2 ...._, 
~ 

~ J. -> 
co~,.... 0 
~· 

1.46 
\.. 

"' 0 ~ (t-%)VC%) 
~ i---< o Gross 

B ~ 

l.o - ~ -·- .---
~ I. ..,.... 

I 

~ 
~ (1-%)'2.5(%) 

........ 2 ,., v __.. 
0-2 

Method: Paris' Equation (Paris 1957) (See Appendix B.) 
Reference: Tada 1973 
(See also pages 2.16, 2.27, 9.1 etc., for related solutions.) 

o.ca 

1.0 

0.66 

0-4-

J.O 
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THE THREE-POINT BEND TEST SPECIMEN 

A. Stress Intensity Factor 

Numerical Values of F(alb) 

The curves in the following figure have 1% 
accuracy. 

1.122 

" '#. .._, 
0.'8 ll-

'$. ....-. 
~ 
I - 0.6 'J 

f 

o.Lt 

o.2 o.~ 

t 

0.6 

-- o/b 

Methods and References 
1. Boundary Collocation Method (8lb = 4, 8) (Gross 1965b) 
2. Green's Function Method (Sfb = 3, 8) (Emery 1969) 

Empirical Formulas 
a. Accuracy 
b. Method, reference 

For Sfb = 4, 

a. 0.5% for any a I b 
b. Srawley 1976 

2.16 

p 

o.s 0.6 
-o/b 

0·'8 1.0 
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ForSfb = 8, 

2 3 4 
F(GJb) = 1.106-1.552(%) +7.71(%) -13.53(%) +14.23(%) 

a. 0.2% for a;b ::; 0.6 
b. Least squares fitting, Brown 1966 

B. Displacements 

Crack Opening at Edge 

Gross' results (Gross 1967, Boundary Col
location Method, s;b = 4) are expected to have 
0.5% accuracy for 0.2::; a;b::; 0.7. An empiri
cal formula with 1% accuracy for any a;b for 
Sfb = 4 is (Tada 1973) 

~ -

p 

_4, 

t 
? 

f---8 
s 

2 3 0.66 v, (%) = 0.76- 2.28(%) + 3.87(%) -2.04(%) + 2 

(1-%) 

Additional Load Point Displacement due to Crack 

f!,crack = f!,total - f!,no crack 

The following formula has better than 1% accuracy for any a;b; for s;b = 4: 

L 
I 

2 

V2 (%) = C ~~1J { 5.58- 19.57(%) + 36.82(%)2 -34.94(%)3 +12.77(%) 4
} 
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'·" -* '·4 -~ a.2 .......... 
~ 
.l. 1.0 -1 o.s --;:;;: o., ""'"' #. 

~~~ 

" ~' 
ll. 

0 Gross (1-%) v,c o/b) 

/ "c ...... 

~ ~- -' Lpu.re L%=4 ---: ---bending --- ~-----

p~.Are bending - - ..-"' v -----~ ....... ...,.,..... o.'t 
""'-' 

0.2 
(t-%):LS~~ ~ ~'--~=4, (t-%)s.Va< o/b) 

~ ~ 
0.2. o.~t-

Method: Paris' Equation (Paris 1957) (see Appendix B) 
Reference: Tada 1973 
(See also pages 2.13, 2.27, 9.1 etc., for related solutions.) 

0.8 

2.18 

o." 

Note: The curves for s;b = 8 are nearly averages between the curves for pure bending and s;b = 4. For other cases (sib> 4), 
displacements can be estimated by interpolation with fair accuracy. 
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THE COMPACT TENSION TEST SPECIMEN 

p 

where (]" = Pjb 

or 

where (]"N = (]"N + (]"N 
Tension Bending 

=_!_+ 6P(a+/y) 
b- a (b- a)2 

2P(2b +a) 
(b- a) 

2 

Numerical Values of F2 

The curves in the following figure have better than 1% accuracy. 

'·' CVh 
o/'b c?.s ;;; ~ 0·7 1.0 

~ Fla. C%~ hfb~ t'h) 

Lt. 0.8 

t ~7 

~ 

0 -~ "' 0·5 ~.5 0·7 - r-... 
0-
~ 

.......... 

~ ""' o.s o.s 
!'-... 0.7 .... ~ r---..... 

0 0"'8 ~ IE- --~ ......... 

0 ().&_.::= ~ .......... 0 on 
o.s fli' 

o.Q 

o.G 
0·'7 

o.2 0·4 o.& 

Method: Boundary Collocation Method 
References: Gross 1970; Srawley 1972 

---91, 

x Sto.ndord 
Spec.ime.n -
0.8 
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Standard Specimen (ASTM Standard E-399-72) 

Standard geometry of compact tension specimen is shown below. 

h = 0.6b 

hi = 0.275b 

D = 0.25b 

c = 0.25b 

{Thickness = b/2) 

A. Stress Intensity Factor 

The F 2 values for the standard specimen are plotted 
in the previous graph. For the range 0.4 :::; a;b :::; 0.6, 
the values ofF, are plotted. 

Note: F2 ~ F2 (%, 0.6, 0.7) 

Empirical Formula 

For the standard specimen, the following formula 
has 0.5% accuracy for a;b > 0.2 (Srawley 1976). 

F2 (%) = 0.443 + 2.32(%) 
2 3 4 

- 6.66(%) +7.36(%) -2.8(%) 

B. Displacements 

Opening at Crack Edge 

Opening at Loadline 

.......... -----~:>--~ 
18 

'' 
I.C 14-

t 12 _,.,-

IO 
0·4 

.., 

F1 / 
/ 

v 

o.s 
~ 0./b 

v 

2.20 

/ 

O.G 
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The following formulas for V, and V2 for the standard specimen have 0.5% accuracies for 0.2 ::; a;b ::; 0.95 
(Saxena 1978). 

v1 (%) = ( 1 + 0~;:) G ~ 0!) 2 
[ 1.6137 + 12.678(%) 

-14.231(%)2 - 16.610(%)3 + 35.050(%)4 - 14.494(%)5] 

V2(%) = C ~ 0!) 2 
[2.1630 + 12.219(%)- 20.065(%)2 

-0.9925(%)3 + 20.609(%)4 - 9.9314(%)5 ] 

Method: Boundary Collocation Method 
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THE ROUND (DISK-SHAPED) COMPACT SPECIMEN 

.,_. ___ w ---~o.2sw 

A. Stress Intensity Factor 

thickness = B 

A=!:_ 
w 

p 
7J=-

WB 

(2 +A) ( 0.76 + 4.8A- 11.58A2 + 11.43A3 - 4.08A4 ) 

F(A) = 3 

(l-A)12 

B. Displacements 

Opening Displacement at Edge 

( 2 3 4) V1 (A) = exp 1.742- 0.495A + 14.71A - 22.06A + 14.44A 

Opening Displacement at Load Line 

V2 (A) = exp 0.26 + 5.381A + 2.105A - 8.853A + 9.122A ( 2 3 4) 

Method: Boundary Collocation Method 
Accuracy: K1 0.3% for 0.2 ::; A ::; 1.0; 8, and 82 0.5% for 0.2 ::; A ::; 0.8 
References: Newman 1979a, 198lb 

2.22 
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p 

p ~0.2SW 
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THE ARC-SHAPED (C-SHAPED) 
SPECIMEN 

ASTM E-399 Standard Specimens: 

Xjw = o and 0.5 

thickness = B 

A=!!_ 
w 

p 
7J=-

WB 

2 3 
F(A) __ 3._74_-_6_.3_0A_+_6_.3_2A..,--_-_2_.4_3A_ 

- ,fif(l-A)% 

Method: Boundary Collocation Method 
Accuracy: Xfw = 0 and 0.5: 1% for 0.45 ::; A ::; 0.55; 1.5% for 0.2 ::; A ::; 1.0. 

0 ::; Xfw ::; 1.0: 3% for 0.2 ::; A ::; 1.0 
Reference: Kapp 1980 
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A. Stress Intensity Factor 

1 
h 

{ 
K1 } { P } { F(%) } 1 
K11 =,fiG Q F(%) 

Kill Jra T FIII(%) 

Numerical Values of F("fb) 

Newman's results based on a method ofboundary collocation are expected to have the accuracy of the order 
of 0.1% for 0.1 :::; a;b :::; 0.8 (Newman 1971, hfb = 2). 

o Newman ( %=2) 

.. I I v rl•-% Fe%> .J 

~ ~ I ~ v -b.....:: 
L -JI-9'6 Fm:C%) 

I I o.s o.'2 

~ 
/ 

'~"' 

---__.,... 

o.s 

v 
1.2 

v t.o 

0.8 
•. 0 
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Empirical Formulas 
a. Accuracy 
b. Method of derivation, reference 

F(%) = (1.297- 0.297cos;~) :a /sin :a 
a. Better than 1% for any a;b 
b. Asymptotic Interpolation, Tada 1973 

F(a/.) = 1- 0.5(%) + 0.957(%) 2 -0.16(%) 3 

b y'1-% 

a. Better than 0.3% for any a;b 
b. Modified asymptotic formula (Tada 1973) llx/2 __ Jr: __ 

B. Displacements at Remote Points (h/h > 2) 

T 2 -1 ( 1ra) 
!l1n = G :;;: cosh sec 2b 

The following formula for D(alb) has better than 0.6% 
accuracy for any a;b . 

~~ AJ/2 
I 

I h 
p 

2 3 4 5 
D(%) = -0,071 (%)- 0.535(%) +0.169(%) -0.090(%) +0.020(%) -1.071 ln (1- %) 

where (1.071 = -{:!!.-) 
7r -4 

Method: Paris' Equation (Paris 1957) (see Appendix B) 
Reference: Tada 1973 
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-
'P fr Q 

0Wl 
s 

~-r-
1.-a-+-a~ 

-
FIII (%, SJb) = H.·---;=======:' 

( cos;~) 2 
1- --

cosh~t 

1rs tanh 1rs 
1{±}a 2b 2f 

(
cosh ~t) -- -1 
cosh1ra 

2b 

{ ( 1rs) . 1ra} ( 1ra) f(%, SJb) = 1 + 0.297-0.115 1- sech 2b smb 1- cos 2b 

plane stress 

plane strain 

Method: Asymptotic Interpolation 
Accuracy: FII1 exact; F1 , FII better than 1% for any a;b and s;b 
Reference: Tada 1973 

2.26 
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p 

p 

" 3 r-------~--------~--------r---------~------~ 
a~ -u. .,,..... 
u~ 2 ~-----+------4-~~~r-----~----~ 

I 

~ 

t I.SOv--.1'1~ 
\~-----+------;-----~r------r----~ 

o Ko.ya- Erdogcan 

Q 
b 
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Crack Opening Area 

4Pa (a) A=£1-Sb 

( ~) = 1.46+3.42(1-cos;~) 
s b 2 

(cos;~) 

Rotation due to Crack 

Methods: K Singular Integral Equation; A and ¢ Paris' Equation (see Appendix B) 
Accuracy: K better than 0.5%; Empirical formula 1 %; A and ¢ 1% 
References: Kaya 1980, Tada 1985 

2.28 
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(a) a (a)2 (a)3 ( a)3/z ( a)s (a)2 ( a)2 g3 b =6.17-28.22b+34.54 b -14.39 b - 1-b -5.88 1-b -2.64 b 1-b 

(a) a (a)2 (a)3 ( a)% ( a)5 (a)2 ( a)2 g4 b =-6.63+25.16b-31.04 b +14.41 b +2 1-b +5.04 1-b +1.98 b 1-b 

-csl..o 2 ~~-___;:::o,~--7".~~---,----+----+-----1 

t 

Methods: Singular Integral Equation (Kaya-Erdogan, a;b = .1, .2, .5, .7). Estimated by Interpolation for 
other a;b. 

Accuracy: 1% (Curves are based on the empirical formula above) 
References: Kaya 1980, Tada 1985 

s, . I , 
NOTE: Dashed lines are G(% ___. 0) = 1.3- .3(Cfa) 'and G(% ___. 1) = 3.52(1 ___. Cfa)y 1- (Cfa) 
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A. Stress Intensity Factor 

{ Kn} 2 { Q}{ Fn(%)} 
Km = ,f/W T Fm (%) 

(a!)_ 1.30- 0.65(%) + 0.37(%) 2 +0.28(%)3 

F Il I b - -----'-'""-'--==~'-----'-'"'-'-

v1-% 

Method: Asymptotic Interpolation 
Accuracy: FII better than 1% for any a;b; F m exact 
Reference: Tada 1973 

B. Displacements 

2T 
!11Il = G W(%) 

Q 

T Q 
l•~ 

T 
r---a-

t---b----t 

~-'i~-1 

h2:2b 

h ">' lb 

-~A:af~l 

2.30 

2 3 4 5 6 
U(%) = -0.184(%)- 0.637(%) -0.129(%) +0.026(%) +0.028(%) +0.008(%) -1.644£n(1- %) 

Method: Paris' Equation (Paris 1957) (see Appendix B) 
Accuracy: U better than 2% for any a;b; W exact 
Reference: Tada 1973 
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A. Stress Intensity Factor 

{ 
Kn } { T } { Fn (%) } 
Kill = Te VJW Fill(%) 

F (a! ) = 1.122- 0.561 (%) + 0.085 (%) 2 +0.180(%) 3 

Il lb y'1- a;b 

Fill(%)= 
2b 1W 
-tan-
7ra 2b 

Method: Asymptotic Interpolation 
Accuracy: FII better than 2% for any a;b; F 1II exact 
Reference: Tada 1973 

B. Displacements 

0~ 

--~-

~A~ T 
h?2b 

.s-'% ~~ 

h~lb 

A~ 
~---

A~ 

2 3 4 5 (b ) U1 (%) = -0.184- 0.637(%)- 0.129(%) +0.026(%) +0.028(%) +0.008(%) -1.644 'Ia Cn(1- %) 

2 3 4 5 6 
U2 (%) = 1.46(%) -0.259(%) -0.091(%) +0.052(%) -0.019(%) -0.008(%) -0.518£n(1-%) 

Method: Paris' Equation (Paris 1957) (see Appendix B) 
Accuracy: U1 , U2 better than 2% for any afb; W1 , W2 exact 
Reference: Tada 1973 
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A. Stress Intensity Factor 

2 3 
F(a;,) = 1.30- 0.65(%)- 0.10(%) +0.45(%) 

b y'1-GJb 

( 2 1ra) 1raj 1ra 
or F(GJb)= 1+0.30cos 2b bsinb 

1ra/ . 1ra Fm(GJb) = b smb 

Method: Asymptotic Interpolation 
Accuracy: F better than 2% for any a;b; Fm exact 
Reference: Tada 1973 

B. Displacements at Remote Points (h/b >2) 

2 2 -1 ( 1ra) 
!1111 =-T·-cosh sec-

G 1r 2b 

The following formula for v(a/b) has better than 2% for any alb. 

( 1ra) ( 1ra) 3 ( 1ra) 5 -1 ( 1ra) V(GJb) = 0.292 sin 2b - 0.041 sin 2b -0.004 sin 2b +0.637 (%)cosh sec 2b 

Method: Paris' Equation (Paris 1957) (see Appendix B) 
Reference: Tada 1973 

2.32 

h 
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FIJI(%, %) = R ---;======~2 
1 - (cos Jrajcos 1rc) 

2b 2b 

F(%, Cfa) = {1 +f(Cfa) ·g(%)}FIII(%, Cfa) 

where 

( . 1ra) ( 1ra) g ( %) = 0.5 1 - sm lb 2 +sin lb 

Method: Asymptotic Interpolation 
Accuracy: FI11 exact; F better than 1% for any a;b and c;a 
Reference: Tada 1985 

Q 
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FIJI (Gfb, Sfb) = H. ----;====== 

(co~) 2 
1+ -sin 7rS 

2b 

= 1 +0.122 cos -{ 
FI(Gfh, Sfh) } ( 2 1ra) 
Fn(Gfb, Sfb) 2b 

Method: Asymptotic Interpolation 

1rs coth 1rs 
l{ +}a 2b 2b 2 

(
sinh ;z) 

1 + ----:;ra 
cos 2b 

plane stress 

plane strain 

Accuracy: Fn Fn better than 2% for any a;b and 8/b; Fn1 exact 
Reference: Tada 1973 

2.34 

t> 

trQ 
I s 

p 
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KI 

Kn 
1 

y'2b 

KIII A 
B 

p 

Q 

T 
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F(Gfh, CJa) 

F(Gfh, CJa) 

FIII(Gfh, CJa) 
A 
B 

1{±} (s~n~~) 
{ FIIIA (Gfb, cIa) } = Jtan 1ra. sm 2b 

Fills (Gfb, cIa) 2b (cos~~) 2 

1- -Jr-C 
cos 2b 

where (o.297= ~ 1) 

Method: Asymptotic Interpolation 
Accuracy: FII1 exact; F better than 1% for any a;b and c;a 
Reference: Tada 1973 



78 Part II 

FIJI(%, Cfa) = R.. r=======;;o 

1- (-co~)2 

where 

Method: Asymptotic Interpolation 

( 0.297 = _7r_- 1) 
v'~-4 

Accuracy: FI11 exact; F better than 1% for any a;b and c;a 
Reference: Tada 1973 

COSV_j 

2.36 
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._,_ __ a --....-~ 

ha = h(a) = d + ma 

K1 = _!_ -j(m) · (.::_ + 0.7) 
y'Ji; ha 

3/ 
f(m) = 3.46- 2.65m + 1.89m 2 (m < 0.5) 

3. 
- '3. "'' = Ji"i J.. ~ 

-~ 
' 

tcm) 
2 

"' -

" 0 

"' -
1J 

,, 
...... 

Ea. 
'-' 

'-1-13. 
2. 

~ 

6 
0 o. t 0.2 o:~ o.4 o.s o.G 

Method: Empirical formula based on the results by Boundary Collocation Method 
Accuracy: Order of 1% for a;h > 1 

a 
References: Gross 1966; Srawley 1967; Tada 2000 



80 Part II 

ELECTRICAL POTENTIAL CALIBRATION 

Uniform Electric Field 

b b 

Electric Potentials: V1 (a), V2 (a) 
Potential Ratios: 

Method: Conjugate Functions Method 
Accuracy: Exact 

_ 1 (coshib) cosh ----:;ra 
cos2b 

_ 1 (coshib) cosh ------mt;; cos2b 

( · h7l)lo) . _ 1 sm 2b 
smh ------nil 

v2 (a) cos'Jlj 
V2(ao) = _1 (sinh7!Jlo) sinh ______1Q_ 1ra0 cos 2b 

References: Johnson 1965; Tada 1973 

2.38 

1 
Yo 

V,(O) t--c::: 



PART 

III 

Two-DIMENSIONAL 

STRESS SOLUTIONS 

FOR VARIOUS 

CONFIGURATIONS 

WITH CRACKS 

0 A. Cracks Along a Single Line 

0 B. Parallel Cracks 

0 C. Cracks and Holes or Notches 

0 D. Curved, Angled, Branched, or Radiating Cracks 

0 E. Cracks in Reinforced Plates 

81 



82 Part III 

y 

~========~-------X 

Method: Westergaard Stress Function 
Accuracy: Exact 

0 

Z =X+ iy 

References: Irwin 1958a (see also Williams 1957) 

3.1 

NOTE: These Westergaard stress functions are the solutions for the crack-tip elastic field. That is, Eqs. (1), (2), and (3) in the text are 
directly derived from these functions by use ofEqs. (38) and (39), Eqs. (55) and (56), and Eqs. (59) and (60), respectively. 



3.2 

where 
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Zo =Xo+i'fo 

'Zo = X.o-'-Yo 

~========~~------X 0 

K =K1 - iKn 

= _1 ___ 1_ { (Q + iP) (-1- _ K _1_) + -"=(Q::....-_iP....:...) .:....(:z0::....-____.:z0~) =+_i(.:....K_+_1....:...)M_} 
,fiJ[- K + 1 y'zO VZQ 2 :Zo VZQ 

,., = { 1+~ plane stress 
3 - 4v plane strain 

Method: Muskhelishvili's Method (Special Case of page 5.3) 
Accuracy: Exact 
References: Erdogan 1962; Sib 1962a 



84 Part III 

y 

p 

-b 0 

KI =-l- (P+ M) 
v'2iJJ 2b 

Method: Muskhelishvili's Method (Special Case of page 5.4) 
Accuracy: Exact 
Reference: Erdogan 1962 

3.3 



3.4 

where 
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l 
Zo Q. 

y 

'Zo = x.+ t'/o 
~========~o~----~x 

z=x+iy 

{ Z1 (z) } 1 { P} [ {-} a J 1 ( 1 j=f-=o 1 ftizo) =- 1 ay0 -- -- -+-- -
Zn(z) 1r Q + ay0 2 z-z0 z z-z0 z 

{ :Z1 (z) } 1 { P} [ {-} a J ( -1 ~ -1 pj - =- 1 ay0 - tan -+tan -
Z1I (z) 1r Q + ayo -zo -:Zo 

{ K1 } 1 {P}[{-} a]{ 1 1} =-- 1 ay0 - --+--
Kn ..j2ii Q + 8yo FZ0 v=ro 

a={!(l+v) 
!(1~J 

plane stress 

plane strain 

Method: Westergaard Stress Function 
Accuracy: Exact 
References: Tada 1972a, 1973 



86 Part III 

where 

Y. 
p 

0 

z=x+iy 

{ Z1(z)} _ _!_{P} [1{- }ayo_!!_] _1 ~ ~ 
ZII(z) - 1r Q + 8yo ..;2 i + y~ V--; 

{ ~I(z) } = _!_ { p} [1 {- }ay0 _!!_].!.tan -1 v'2.YQZ 
ZII(z) 1r Q + 8yo 2 Yo -z 

{;~} = ~{ ~ }[1{ ~ }ayo a~J ~ 

={~}[1{~}~]~ 

Irn {~I(x) } = _l_ { p} [1 {- }ay0 _f)_] tanh -1 y'2YolXf 
ZII(x) 27r Q + cyo Yo-X 

x<O 

= _l_ { p} [tanh -1 y'2YolXf {+}a xy'2Yo1Xf] 
21r Q y0-x - 2+ 2 Yo x 

{
!(l+v) 

a= 1(_1) 
2 l-v 

plane stress 

plane strain 

Method: Westergaard Stress Function (Special Case of page 3.4) 
Accuracy: Exact 
References: Tada 1972a, 1973 

3.5 
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y 
p 

T. Q 

Q T -.b 0 

p 

z=x+iy 

ZII(z) =- Q -- -{ 
Z1(z) } 1 { p} 1 ~ 
ZIII(z) 7r T z+b z 

{ 
~I(z) } 2 { P} _1 ~ ~n(z) = -- Q tan -
ZIII (z) 7r T z 

( -b <X 5, 0) 
(x <-b) 

Methods: Westergaard Stress Function, etc. 
Accuracy: Exact 
References: Irwin 1957, etc. 



88 Part III 

'f 

p 

2 V(X,O) t ___ }_:./ 

Crack Opening Profile 

{ 

-1 /@ 
8P tanh VT 

2v(x,O) =-, 
x<O 1rE -1 /@ 
- coth VT 

-b<x5,0 

x< -b 

Vertical Displacement at (O,y) 

p [ -1 ..flY5 b..flYb] v(O,y) = - 1 tanh --b- a-2--2 
1rE y+ y +b 

where 

{ ! ( 1 + v) plane stress 

a= 1( 1) 
2 l-v plane strain 

3.6a 

Methods: v(x, 0) Westergaard Function (see page 3.6); v(O,y) Paris' Equation (see Appendix B) or 
Reciprocity (see page 3.5) 

Accuracy: Exact 
Reference: Tada 1985 
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Ima:~)} ~~{r H ,ft+ (' +ilH1x/ ~~~} 
x<O 

rm{~~~J) }=~{~}b 
ZIII(x) t 
x~-b 

Methods: Westergaard Stress Function, etc. (Integration of page 3.6) 
Accuracy: Exact 
Reference: Tada 1973 
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p 
2 V(>)O) 

p 

Crack Opening Profile 

_ Sp [lflx 1 ( x) { tanh -
1 Vlf} 

x:<:O 7rE coth -1 M 
2v(x,O) --,b b+ 1 +t; Jff} 

b 

Opening at ( -b, 0): 

8p 
2v(-b 0) =-b , JrE' 

Method: Westergaard Stress Function (see page 3.7.) 
Accuracy: Exact 
Reference: Tada 1985 

3.7a 

y 

- b <X::::; 0 }] 

x< -b 
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~===:::::::j~-)< 
0 

z=x+iy 

{ Z1(z) } 1 {P} [ {-} a J [{ _ _ } 1 =- 1 oyo- (v=z2-~)-(yi=Z1-~)-
Z11 (z) 7r q + Oyo Vz 

{ ( 
-1 Fi; -1 Fz;.) ( -1 Fi; -1 Fz;) } - tan y --;- - tan y --;- - tan y --;- - tan y --;-

{ ;~ ~~ } = ~ {: } [ 1 { ~ } oyo ~J [ { ( y'=Z2 - H 2 ) - ( y'=Z\ - ~)} Vz 

where 

-{(z-z2 )tan-1 F-(z-z2 )tan-1 ff--(z-zJ)tan- 1 F+(z-z1 )tan-1 ff-}] 

{ KI } = _2 {p} [t{- }oyo _!!__] { (v=z2-~)- (y'=Z!- ~)} 
Kn ..j27r q + oyo 

{
!(l+v) 

o= 1(_1) 
2 1-v 

plane stress 

plane strain 

Method: Westergaard Stress Function (Integration of page 3.4) 
Accuracy: Exact 
References: Tada 1972a, 1973 



92 Part III 

t----b----.j 

{
o-y(x,O)} {p} 1 
Txy(x, 0) = q (~X) 
Tyz(x,O) t 

Method: Integration of page 3.6 
Accuracy: Exact 
Reference: Tada 1972a, 1974 

-b<:,x-5,0 

3.9 

0 
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y 
y(o,y) 

j_ (O,y) 

:2. v (-co, o) 
2V(X,O) 

z=x+iy 

Z1 (z) =-(1-a)tanh - =-(1-a)cosh --- P -1/!;( P -1z+x0 ) 

7r x0 21r z - x0 

p 
K1 =--(1-a) 

y'27fXQ 

Crack Opening Profile: 

4P -1/f:xl 2v(x,0)=-,(1-a)tan -
x:<:; o 1rE Xo 

Opening at Infinity: 
2P 

2v( -oo, 0) = E' (1- a) 

Vertical Displacement at (O,y): 

p { -1 v(O,y) = -, (1- a) sin 
7rE 

2xoY _ ~ V2XQY(xo + y)} 
2 2 2 2 2 

where 

-{!(l+v) 
a- 1(1) 

2 1-v 

xo +y xo + y 

Plane Stress 

Plane Strain 

Method: Integration of pages 3.6, 3.6a or Special Case of page 5.19 or 5.20, or 24.19 
Accuracy: Exact 
Reference: Tada 1985 



94 Part III 

where 

Thin Rigid Wedge 

E'h 
K-x!o- yl2ib 

E'h 
KI =--

x=-b yl2ib 

4 -1 fix 
2v(x,0)=-hsin b 
-b<x<O 7r 

E = 2 
, { E plane stress 

E/(1- v ) plane strain 

3.11 

y 

Methods: Singular Integral Equation, Westergaard Stress Function or a Special Case of page 4.15 or 
page 5.21 

Accuracy: Exact 
References: Barenblatt 1962, Tada 1985 

The Westergaard Stress Functions are 

E'h 1 
Z1 (z) =-· ----:=== 

27r vz(z +b) 

- E'h -i #_ 
Z1(z) = l;"sinh yz; 
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Thin Rigid Wedge 
+ 

( -~0~ P <Po) ' J p + ~ 
( -Po~P~ o ) 

4 . -1 fix 4p 2v(x,O) =-hsm -+----,v-x(b-x) 
-bSxSO 7r b E 

where 

E = 2 
, { E plane stress 

E/(1- v ) plane strain 

Method: Superposition of Solutions of page 3.11 and page 5.1 
Accuracy: Exact 
References: Tada 1974 

y 

NOTE: 1. In (I), when p > p0 , separation of contact surfaces occurs near x = -b, and when p < - p 0 , crack closure occurs 
near x = 0. 
2. In (II), whenp > 0 (remote tension), separation of contact surfaces occurs for large -x, and whenp < - p 0 , crack closure 
occurs near x = 0. 

The Westergaard Functions are 

p. 3.12 p. 3.11 p. 5.1 (replace a by p) 



96 Part III 

z=x+iy 

{ Z1(z) } 1 { P} [ _ a J [1 ( . -1 z0z- i . -1 z0z- i) _ =- 1 ay0 - - sm +sm 
Z11 (z) 1r Q {+} Oyo 2 a(zo-z) a(zo-z) 

{ 1}~(1012 ~2 2)] - z -a + z -a 
0 i 0 0 

where 

_ {! (1 + v) plane stress 

a- 1(1) 
2 l-v plane strain 

Method: Westergaard Stress Function 
Accuracy: Exact 
Reference: Tada 2000 

4.1 
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{ Z1(z) } 1 {P} [ {-} a J ( zo ~ zo ~) 1 
Zn(z) =:;;: Q 1 + oyoiryo z~-iVzo-a +z~-iVzo-a Vi-i 

2 
(a/) -1 -1 

z +tan 
2 

1- (%o) 

{ K1 } 1 { P } [ { - } a ] { zo zo } 
Kn =Fa Q 1 + ayo iryo Jz~ -i + Jz~ -i 

where 

_ {! (1 + v) plane stress 

a- 1(1) 2' 1_v plane strain 

Method: Westergaard Stress Function (Superposition of page 4.1) 
Accuracy: Exact 
References: Tada 1972a, 1973 



98 Part III 

where 

z=x+iy 

{ ZI(z)} _ _!_{P} [1{- }ayo_!!_] ~ 
Zn(z) -7r Q + 8yo}+y~ 

{ Z1 (z)} 1{P}[1{-} 8] -1 -- ayo- tan 
ZII(z) - 1r Q + 8yo 

Im{~I(x) }=_!_{P}[1{-}ay088Jtanh-1 
Zn(x) 7r Q + Yo 

1 {p} [ -1 =:;;: Q tanh 

_ {! (1 + v) plane stress 

a - 1 ( 1 ) plane strain 2 1-v 

Method: Westergaard Stress Function (Special Case of page 4.1) 
Accuracy: Exact 
References: Tada 1972a, 1973 

2 2] x -a -2--2 
a +Yo 

4.3 
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! Voo 

ly 

r 
T ZV()C~O) 

Yo 

0 

Yo 

t:-
T V00 

Crack Opening Profile: 

4P ( -1 2v (x, 0) = -, tanh 
lxl:>a 1rE 

Relative Vertical Displacement at Infmity: 

4P ( -!Yo Yo ) 2v00 = - 1 sinh -- a fF+lo 
1rE a 2 + 2 

a Yo 

2v00 = 2v(x, O)lxl~oo 

Methods: v(x, 0) Westergaard Stress Function (see page 4.3); v co Paris' Equation (see Appendix B) or 
Reciprocity (see page 4.9) 

Accuracy: Exact 
Reference: Tada 1985 



100 Part III 

Method: Muskhelishvili's Method (Special Case of page 6.2) 
Accuracy: Exact 
Reference: Erdogan 1962 

4.4 
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y 
p 

C·T 0 

\ -a. 0 a..Q b T 
p 

~ 

{ Z1(z) } 1 {p} ~ ( 1 2 { 1 }) Zn(z) =- Q 2 2 -+2 z 0 
ZIII(z) 7r T ~ b-z a 1 

_ 1 . -I bz- a 2 2 2 2 2 {ZI(z)} {p}[ 2 ~~{1}] 
~~~~;) =; ~ sm a(b-z)- i b -a a -z ~ 

{if} =-
1 {~}~(--b--±~{~}) 

K Fa T b+a a 1 
III ±a 

Method: Westergaard Stress Function 
Accuracy: Exact 
Reference: Tada 1985 



102 Part III 

V(O, Y) y 

_t , (o.,y) 

0 

Crack Opening Profile: 

2v(x,O) =-, cosh +- - -1 1- (-) 4P [ -11bx-i I xfGGb)2 FfJ2] 
lxl::>a 1rE a(b- x) a a x 

Vertical Displacement at (O,y): 

2P [ -1 v(O,y) = -, tanh 
7rE 

Relative Vertical Displacement along y-Axis at Infinity: 

4P -ib 
2voo = - 1 cosh -

1rE a 

4.5a 



4.5b 

Relative Rotation at Infinity: 

where 
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B= 8P ~(= {2v(x,O)} ) 
7rE1 2 X a x--+oo 

{
!(l+v) 

a= 1(_1) 
2 1-v 

plane stress 

plane strain 

Methods: v Reciprocity(seepage4.3a); e Frompage4.10a withM = PVb2
- i (or Paris' Equation

see Appendix B) 
Accuracy: Exact 
Reference: Tada 1985 

NOTE: 1. Always K1_" < 0. 
2. No surface interference (x::::; -a) was considered. 



104 Part III 

{
ZI(z) } 2 {p} b~ 
Zn(z) =- Q 2 2 2 2 
ZIII(z) 7r T (b -z )~ 

{ 
Z1(z) } 2 { p} _1 
~n(z) =;: Q tan 
ZIII (z) T 

Kn =- Q {
KI } 2 {p} b 

KIII ,fi{i T V b2 - a2 

Methods: Superposition of page 4.5 (or Special Case of Periodic Cracks, page 7.7) 
Accuracy: Exact 
References: Erdogan 1962; Tada 1973 

4.6 
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Crack Opening Profile: 

0 

2P b 
KI =- ---:=== 

Fa Vb2 -i 

SP {tanh-1 } 2v(x,O) =-, -1 
lxka 1rE coth 

Vertical Displacement at (O,y): 

4P [ -1 v(O,y) = - 1 tanh 
IrE 

Relative Vertical Displacement at Infmity: 

SP -lb 
2voo = - 1 cosh -

1rE a 

2v00 = 2v (O,y) = 2v (x, 0) 
y---+oo x---+oo 

a::; lxl < b 

lxl > b 



106 Part III 

where 

{
!(l+v) 

a= 1(_1) 
2 1-v 

plane stress 

plane strain 

Method: v Paris' Equation (see Appendix B) (or Reciprocity- see page 4.3a) 
Accuracy: Exact 
Reference: Tada 1985 

4.6b 
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y 

++++++: . . . . . . t 

-a. 0 Cl b X 

titttv 

z=x+iy 

{ 
Z1(z)} 1 {p}{~ +f(~)z 
ZII(z) =- q 

7r ~ ZIII(z) t va -z 

-1 bz-i} 
cos a(b- z) 

{ ~J(z)} 1{P}{ (b)~ .-ibz-i} 
~;~~) =;;: ~ -f; ya- -z- +(b-z)sm a(b-z) 

ImU~B)} ~; 0 }{t(~) xVI- m' + (b -x)=h-· l:~b--:)1} 
lxl2: a 

where 

~~ 
(b) -ib !;=cosh; 

~~ 
Method: Westergaard Stress Function (Integration of page 4.5) 
Accuracy: Exact 
Reference: Tada 1985 



108 Part III 4.7a 

p ~( b) KI+a =-yb- -a- 1±-- ,fiW a 

Crack Opening Profile: 

{ 
I 

2

1 fGJ:FGf} 4p -1 bx- a x b a 
2v(x,O) = -, (b -x) cosh -- + b- (-) -1 1- (-) 

lxka 1rE a(b-x) a a x 

Opening at x = b: 

4pb { b (b)
2 

} 8b=2v(b,0)=7rE' In;;-+;;- -1 

Relative Vertical Displacement along y-Axis at Infinity: 
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Relative Rotation at Infinity: 

Method: Westergaard Stress Function (Integration of pages 4.5 and 4.5a,b) 
Accuracy: Exact 
Reference: Tada 1985 

NOTE: 1. Always K1_" < 0. 
2. No surface interference (x::::; -a) was considered. 



110 Part III 

z=x+iy 

{ ZI(=)} 2{p}{VS2-i -~vs2 -i} Z11(z) =- q - 2--2 - tan -2--2 
ZIII(z) 7r t a -z a -z 

~11 (z) = ~ q btan -l {ZJ(z)} {p}{ 
ZIII(z) t 

Im{I~~~} =~{~}{b(tanh=~). 
ZIII(x) 7r t coth 

lxl>a 

Method: Integration of page 4.6 or Superposition of page 4. 7 
Accuracy: Exact 
Reference: Tada 1973 

4.8 
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p 

p 

Crack Opening Profile: 

2v(x,O) = Sp' {b(tanh=~) 
lxka 1rE coth 

Opening at lxl = b: 

y p 

0 

T VOl) 

2p~2 KI+a =-- b -a - Fa 

Spb b 
2v(± b, 0) = -, £n-

7rE a 

Relative Vertical Displacement at Infmity: 

Spb { -1 b r:-;;;::z( a ) 2 } 2voo=7rE' cosh ~-yl-l._z;) (=2v(x---+oo,O)) 

Method: Westergaard Stress Function (Integration of pages 4.6 and 4.6a) 
Accuracy: Exact 
Reference: Tada 1985 

x ___ _j_2V -----,- . 

( a::::: lxl <b) 
x>b 



112 Part III 

p 

~T .. Q 

z=x+iy 

{ Z1(z)} 1{p} 1 
Zn(z) =- Q 
Zm(z) 7r T Vi-i 

{ 
~I(z) } 1 { p} _1 z 
~II(z) =:;;: Q sin ; 
Zm(z) T 

{KI} 1 {p} Kn -- Q 
Km -..jim T 

Irn {I~~~) } = ~ {~}cosh -1
; 

Zm(x) T 
lxka 

Methods: Special Case of page 4.3 or page 7.1 or by Stress Concentration Factor 
Accuracy: Exact 
References: Neuber 1937; Winne 1958; Paris 1960, 1965; Sib 1964 

4.9 
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2V(X,O) 

------:.-o. 0 

Crack Opening Profile: 

Vertical Displacement at (O,y): 

where 

4P -1 X 
2 v(x, 0) = - 1 cosh -

lxka 1rE a 

2P ( -1y y ) v(O,y) = - 1 sinh --a v;;;; 
1rE a 2 + 2 a y 

{
!(l+v) 

a= 1(_1) 
2 l-v 

plane stress 

plane strain 

Methods: v Reciprocity (see pages 4.3a and 4.6a) or Paris' Equation (see Appendix B) 
Accuracy: Exact 
Reference: Tada 1985 



114 Part III 

-o. 

I 
y 

z=x+iy 

{Z1 (z)} 2 {M} z 
Zlll(z) = 1ri T Vi _ i 

{ ~I(z)} =~{M}[-~] Zlll(z) 1ra T 

{ K1} =+-2 {M} 
Klll ±a - aV7f(i T 

Im{:¥~~2)} = 7r~2 { ~} ·xVl- (G/x)2 

lxl2a 

Methods: Westergaard Stress Function, etc. or by Stress Concentration Factor 
Accuracy: Exact 
References: Neuber 1937; Paris 1960, 1965; Benthem 1972 

4.10 
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Crack Opening Profile: 

SM x F(i1a)2 
2v(x,O) =-,2 1- -

lxl::>a IrE a X 

Relative Rotation at Infinity: 

Method: v, 8 Paris' Equation (see Appendix B) 
Accuracy: Exact 
Reference: Tada 1985 

NOTE: No surface interference (x::::; -a) was considered. 
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Q.. 

p 

z=x+iy 

{ 
Z1 (z)} 1 {Psinry-Qcosry} 1 
Zn(z) =- Pcosry+Qsinry ~ 

~ 2 2 
Zm(z) T a -z 

{ 
~1 (z) } 1 { Psin ry- Qcosry} _1 z 
~n(z) =- Pcosry+Qsinry sin-
Zm(z) ~ T a 

{ K1} 1 {Psinry-Qcosry} 
~~1 = ,fi(i P cos ry -;: Q sin ry 

{z1(x)} 1 {Psinry-Qcosry} -lx 
Im ~11 (x) =:;;: Pcosry-;:Qsinry cosh ~ 

Zm(x) 
lxl:>a 

Method: Superposition of page 4.9 
Accuracy: Exact 
References: Neuber 1937; Winne 1958; Paris 1960, 1965; Sib 1964 

4.11 

p 

0( 
T Q 
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0 

q 
t 

{ 
CTy(x,O)} {p} "' 
Txy(x,O) = q ~~~ 
Tyz(x,O) t 

lxl2a 

(r > 1) 

{ 
K1 } {P} r(~) 
i~ = ~ v'a r(i) 

where r('Y) = Gamma Function (See Appendix M) 

Method: Integration of page 4.6 
Accuracy: Exact 
Reference: Tada 1974 

X 
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Crack Opening Profile: 

Displacement at (O,y): 

t V(o~y) 
y 

8P(l- a) -1 
2v(x, 0) = 1 cos 

lxka 1rE 

2 
1- (Xo /a) 

2 
1- (Xo /x) 

2 ( O) 8P(l- a) . -1 x0 
v oo, = 1rE' sm -;; 

2 
4P(l -a) ( a) { . -1 

v(O,y) = 1rE' 1 - ay ay sm 
(Y/a) +1 

2 
(Y/b) +1 

Relative Vertical Displacement at Infmity: 

where 

2v00 = v (0, oo)- v (0, -oo) = 2v (oo, 0) 

a= {! (1 + v) plane stress 

! ( 1 ~v) plane strain 

Method: Integration of page 4.6; Paris' Equation (see Appendix B) 
Accuracy: Exact 
Reference: Tada 2000 

-1 x0 } tan -
y 

2V(~o) 
_t_ 

T 

4.13 
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(A) 

-

I 

(B) 

012 --
--
~- I 

-

-

~:za-f 

j--2.a 

~ 
) 

I 
l 

( 
J 

- -, 
( 

% .... --
---012 

Method: (A) Special (Limiting) Case of page 21.1 or 21.3; (B) Superposition of (A) 
Accuracy: Exact 
Reference: Tada 2000 

-__ rr 

-~ -.... 
-~ 
-- 2. 



120 Part III 4.15 

2v(x 0) = 2h{l- F(rp, k)} 
a~~Sb K(k) 

where 

plane stress 

plane strain 

-1 Jb2 -i <p = sin - 2--2 
b -a 
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K(k) =F(7r/2, k) 

Method: Westergaard Stress Function (or Negative of page 5.21) 
Accuracy: Exact 
Reference: Tada 1974 

NOTE: For K(k), see Appendix L. 

The Westergaard Function is 

E'hb 1 1 
ZI(z)=-2K(k). ~ ~ 

Vz -a Vz -b 
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where 

Thin Rigid Wedge 

E'h 

t + t p + ' 

' • ' p ' ' ( ~ -s P:S o) 

Pl = 2b{K(k) -E(k)} 

KI = {E'h +pb2E(k)- iK(k)}_l_ E 
x~±a 2 b kK(k) V~ 

2v(x,O) = 2h{l- F(rp(,kk))} + 4p~ {K(k)E(rp, k) -E(k)F(rp, k)} 
a<::lxl<::b K E 

plane stress 

plane strain 

4.16 
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v 2 -11§2-i k = 1- (a/b) , r.p =sin - 2--2 
b -a 

1'1' drp 
F( rp, k) = , K( k) = F(Ir /2, k) 

o V 1 - k 2 sin2 r.p 

Method: Superposition of page 4.14 and page 6.1 
Accuracy: Exact 
Reference: Tada 1974 

NOTE: 
1. In (I), when p > p 1 , separation of contact surfaces occurs near x = ±b, and when p <p2 , crack closure occurs near 
x= ±a. 

2. In (II), when p > 0 (remote tension), separation of contact surfaces occurs for large lxl, and when p < p,, crack closure 
occurs near x = ±a. 

3. For K(k) and E(k), see Appendix L. 

The Westergaard Function is Z1 (z) = Z1 (z) + Z1 (z) 
p.4.16 p.4.15 p.6.1 (replace O" by p) 



124 Part III 

(j 

t t t .,.. 
0 0 01'.t 

ly "t 

-+-- r a-:j I X -a 0 a 

"1: 

'T.t ® ® ® 
-c t ~ o-l 

z=x+iy 

ZII(z) = T { 
Z1(z) } { a } z 

ZIII(z) Tg Vi-i 

~II(z) = T vi-i { 
Z1(z) } { a } ~ 
ZIII(z) T£ 

Im{l~~~j }={~}~ 
ZIII(x) Te 

lxl<::a 

Methods: Westergaard Stress Function, etc. or by Stress Concentration Factor 
Accuracy: Exact 

........ 
-cr 
-

References: Griffith 1920; Westergaard 1939; Irwin 1957, 1958a; Paris 1965, etc. 

5.1 



5.1a 

(~~) 

Crack Opening Area: 

Crack Opening Profile: 

Opening at Center: 
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-a 

A 

(j 

f t t t t 
V(qy) y 

j_ (0, '/) 

• ()"" 

2 
A= 2rnra 

E' 

4a ~ 
2v(x, 0) =--; V a- - x-

lxl<::a E 

4aa 
80 = 2v(O, 0) = Jil 

X (=:~) 

Additional Vertical Displacement at (O,y) due to Crack: 



126 Part III 

where 

{
!(l+v) 

a= 1(_1) 
2 1-v 

Method: Paris' Equation (see Appendix B) 
Accuracy: Exact 
Reference: Tada 1985 

plane stress 

plane strain 

NOTE: v(O,y) is the displacement at (O,y) when uniform pressure a is applied on crack surfaces. 

S.lb 



5.2 

Method: Superposition 
Accuracy: Exact 
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{ 
K1 } { a-sin I } 
Kn = a- cos 1 sin 1 · ,fiG 
KIII Te 

) 
.;,~~==::::-----

-ct 

{ K1 } = 7 { -~OS 21 } . ,fi{i 
K11 sm 21 

KII = 0 

References: Paris 1965; Sib 1965a 
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y MrtS-ra 
Zo 

'Z.o ._ Xo + i.yo 

where 

= _1_ 1 { (Q + iP) [ ( a+zo _ 1) _ "' ( a+zo 
2Viffi K+ l C22 f:22 yz 0-a yz 0-a 

{ i+~ plane stress 

K = 3 - 4v plane strain 

Method: Muskhelishvili's Method 
Accuracy: Exact 
References: Erdogan 1962; Sib 1962a 

1)] + a[(Q-iP)(zo- zo)+i(l+K)M]} 

(zo-a)Vz~-a2 

5.3 
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-0 0 b Q 

K1 __ 1_ {P /a+b_a +_b + (-"' --1) Q + __ u-=a =} 
+a - 2,fi{i V ~ "'+ l (a - b) Vi - b2 

1 { fi4+b ("'-1) } K11 --- Q --- -- P 
+a - 2,fi{i a - b K + 1 

where 

{ i+~ plane stress 
K,-

3 - 4v plane strain 

Method: Muskhelishvili's Method 
Accuracy: Exact 
References: Erdogan 1962; Sib 1962a 
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where 

'I 

-a. 

p 
f..fq 

c Q 

K ± =- - pa sin --sin -+ 1- (C/a) ± 1- (b/a) + -- q(c-b) 1 1 [ ( -1 c -1 b v 2 v 2) ("'- 1) ] 
Ia 2VJffi a a K+1 

K + =-- qa sin --sin -+ 1-(C/a) ± 1-(b/a) - -- p(c-b) 1 1 [ ( -1 c -1 b v 2 v 2) ("'- 1) ] 
ll-a 2 VJffi a a K + 1 

{ 1+~ plane stress 
K,-

3 - 4v plane strain 

Method: Muskhelishvili's Method (Integration of page 5.4) 
Accuracy: Exact 
References: Erdogan 1962; Sib 1962a 

5.5 



5.6 

where 

Two-Dimensional Stress Solutions for Various Configurations with Cracks 131 

y LQ 
Zo 

Zo=Xo+I.Yo 

-a 0 
.X 

0. 

Q--t 

{ Z1(z)} l{P}[ {-} a]{ -l~+z0~-a -l~+z0 ~-a} - =- 1 ayo- tan -- --+tan -- --
ZII(z) 1r Q + 8y0 a-z0 z+a a-z0 z+a 

P [ a J 1 {~±zo ~±zo} K + =-- 1-ayo-- --+ -_-
I_a ..jim 8y0 2 a::po a=t=zo 

a= { ~ (1 + v) plane stress 

~ ( r2-v) plane strain 

Method: Westergaard Stress Function 
Accuracy: Exact 
References: Tada 1972a, 1973 
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where 

0 0. 

z=x+ iy 

Z1 (z) _ P _ -1 z -a -1 
{ - } 1 { }[ aJ{ 2 2 

Zn(z) -:;;: Q l{+}ayoayo tan i-z~+tan 

a = {! (1 + v) plane stress 

! C ~v) plane strain 

Method: Westergaard Stress Function (Superposition of page 5.6) 
Accuracy: Exact 
References: Tada 1972a, 1973 

5.7 

2 2} ~ 
2 _2 

a -z0 
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( 
r_Q 

'Zo= '1. 
e 

-Q 0 a 

z=x+ iy 

{ ~: } = ~ { ~} [ 1 { +} ayo a~J R 

2 2 
z -a 
-2--2 

a +Yo 

~ ~ {~} R H:"}a a'~y:l ( ~ ~ {~}c~o[l{:"}a,m'oJ) 

{ Z1 (x)} 1{P}[{} a] -1 Im _ = - 1 + ay0 !'i:':- tanh 
ZII(x) 7r Q vyo 

2 2 a -x 
-2--2 

a +Yo 

1 { p} [ -1 =:;;: Q tanh 

2 2 2 
a -x {+} Yo 
--z--+ 2 - a --z--+ 2 
a Yo x Yo 

2 2] a -x 
-2--2 

a +Yo 
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where 

a= {! (1 + v) plane stress 

! (1 ~v) plane strain 

Method: Westergaard Stress Function, etc. (Special Case of page 5.6) 
Accuracy: Exact 
References: Paris 1957; Barenblatt 1962; Irwin 1962a; Tada 1970, 1973 

5.8a 



5.8b 

Crack Opening Area: 

Crack Opening Profile: 

Opening at Center: 

where 

Two-Dimensional Stress Solutions for Various Configurations with Cracks 135 

-o. 

A 

y 
p 

(o,-Y.) 

p 

p a ( y~ ) KI=----== 1+a-
..fiffi Ji +y~ i +y~ 

4P( ~ ) ( Yo ) A = E' V a +Yo -Yo 1 +a ~ 
ya +Yo 

4P ( -1 2v(x, 0) = -, tanh 
lxi:Sa 1rE 

2 2 2 
a -x Yo 
-2--2 + a-2--2 

a +Yo x +Yo 

2 2 ) a -x 
-2--2 

a +Yo 

4P (. -1 a a ) 80 =2v(O,O) =-, smh -+a~ 
1rE y0 2 + 2 

a Yo 

a= {! (1 + v) plane stress 

! (1 ~J plane strain 

Methods: A, v Paris' Equation (see Appendix B) (or v also from page 5.8) 
Accuracy: Exact 
Reference: Tada 1985 
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Crack Opening Area: 

Crack Opening Profile: 

p a 
Z1(z)= ~ 

7r zV z -a 

- P -1 a 
Z1(z) =-cos -

7r z 

A= 4Pa 
E' 

4P -la 
2v(x, 0) = - 1 cosh -

lxi:Sa 1rE X 

5.9 

X 
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Vertical Displacement at (O,y): 

where 

2P ( -1 a a ) 
1rE y 2 2 

v(O,y) = - 1 sinh -+a p-;; 
a +y 

a= { ~ (1 + v) plane stress 

~ ( 1 ~v) plane strain 

Method: Westergaard Stress Function (Special Case of page 5.8 or 5.10) 
Accuracy: Exact 
Reference: Tada 1985 
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y 

Q 

p 

z=x+ iy 

Z11 (z) =- Q { 
Z1 (z) } 1 { p } ~ 
ZIII (z) 7r T (z- b)Vi - i 

{ ~I(z) } 1 {p} -1 bz-i 
~~I~J) = ; ~ sin a(z- b) 

{ K1 } 1 { p } fM±b Kn =- Q -
Kill + ..jim T a=t=b 

_a 

Method: Westergaard Stress Function, etc. 
Accuracy: Exact 

\ 

References: Irwin 1957, 1958a; Erdogan 1962; Sib 1962a, 1964; Paris 1965 

5.10 



5.10a 

Crack Opening Area: 

Crack Opening Profile: 

Opening at Center: 
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-a 

y 
V(O.Y) 

4P -1 i -bx 
2v(x, 0) = - 1 cosh -

1
--bl 

lxl<::a 7rE ax-

4P -!a 
80 = 2v(O, 0) =-,cosh -b 

7rE 

Vertical Displacement at (O,y): 

where 

2P ( -1 v(O,y) = - 1 tanh 
7rE 

a= {! (1 + v) plane stress 

! (1 ~v) plane strain 

Method: A, v Paris' Equation (see Appendix B) or Reciprocity (see page 5.8b and page 5.9) 
Accuracy: Exact 
Reference: Tada 1985 
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y 
p p 

z=x+iy 

{ Z1(z)} 2{p} _1g2 -i 
~n(z) =:;;: Q tan - 2--2 
ZIII(z) T a - b 

{ 
K1 } 2 { p} a 
KII =- Q 
KIII ,fi{i T Vi-b2 

Im{ ~~~~} =~{~}lnlg+gl 
- () T a-x- a -b ZIII X 

lxl<::a 

Method: Westergaard Stress Function, etc. (or Superposition of page 5.10) 
Accuracy: Exact 
References: Irwin 1957, 1958a; Erdogan 1962; Sib 1962a, 1964; Paris 1965 

5.11 
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Crack Opening Area: 

Crack Opening Profile: 

( 1)/S2 SP tanh- a - b 
2v(x, 0) = -, -1 - 2--2 

lxl <::a JrE coth a -X 
( a~ lxl <b) 

lxl > b 

Opening at Center: 

SP -1 a 
80 = 2v(O, 0) =-,cosh -b 

IrE 

Vertical Displacement at (O,y): 

where 

4P ( -1 v(O,y) = -, tanh 
IrE 

_ {! (1 + v) plane stress 

a- 1(1) 2' l-v plane strain 

Method: Superposition (see pages 5.10 and 5.10a) 
Accuracy: Exact 
Reference: Tada 1985 
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-a 

z=x+iy 

{ 
Z1((z))} 1 {p} [. -1 i -cz . -1 i -bz sin-1 ~-sin- 1 ~ ~-~] 
Zn z =- q sm ---- sm ---+ - -----:::==,.---
Zm(z) 7r t a(z-c) a(z-b) VI- (%)2 vi -a2 

{ 
~I(z) } 1 {p} [ . -1 i- cz . -1 i- bz (. -1 c . -1 b) ~] Z11 (z) =- q (z-c)sm ----(z-b)sm ---+ sm --sm - yz--a-
Zm(z) 7r t a(z-c) a(z-b) a a 

{ 
~I(x) } 1 {p} [ -1 i- ex -i i- bx ( . -1 c . -1 b) rz-2] Irn ~n(x) =- q (c-x)cosh -

1
-_-

1
-(b-x)cosh -

1
-_-

1
+ sm --sm- ya--x-

Zm(x) 1r t ax c ax b a a 

lxl Sa 

Method: Integration of page 5.10 
Accuracy: Exact 
References: Erdogan 1962; Sib 1962a, 1964; Paris 1965 
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y 

-a -b a 

z=x+ iy 

Zn (z) = - q a -tan {
ZI(z)} 2{P}[ sin-'ll. -1 

Zlll(z) 7r t VI- (%) 2 

{ ~I(z) } 2 {p} [ ( -1 b) rz--2 -1 
~n(z) =:;;: q sin ; yz--a--ztan 
Zni(z) t 

2 

_l_-_(:..,;.;=z)_ + b tan -I 

(%) -1 

{ 
K1 } 2 {p} ( _1 b) 
~~1 = :;;: i sin ; ,fiG 

(%)2 -1] 
1- (%)2 

_ 2 . -I b 2 2 coth {ZI(x)} {p}[ ( _,) 
Im ~;I~~) =:;;: ~ (sm ;)~ -x tanh-! 

(a/x)2 - 1 

(%)2- 1 

+ b(coth~11 ) 
tanh 

Im { ~~1~2) } = ~ {~} [(sin -I~) Vi- b2 + b ln ~] 
Zlll(x) t 
lxl~b 

Method: Special Case of page 5.12 
Accuracy: Exact 
References: Erdogan 1962; Sih 1962a, 1964; Paris 1965 
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Crack Opening Area: 

Opening at Center: 

Opening at x = b: 

y 

2 -1 b 
K1 = p..fiW; ·-sin -

7r a 

2pa . -1 b b b 
A =y Sill ~+~ 1- (~) 2{ Rf} 

Spa { -1 b b -1 a} 
80 = 2v(O, 0) = - 1 sin -+-cosh -b 

1rE a a 

{Rf } Spa b . -1 b b b 
8b=2v(±b,O)=- 1-(-) sill ---£n-

7rE' a a a a 

Method: A, 8 Paris' Equation (see Appendix B) or Integration of pages 5.11 and 5.11a 
Accuracy: Exact 
Reference: Tada 1985 

5.13a 
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z=x+ iy 

{ ZI(z)} 2{P}{ 1 z -la} Zn (z) = - q 2 +-sin -
ZIII (z) 7r t V 1 - (%) a z 

{ ~I(z) } 1 {p} { rz---2 i . -1 a} 
~II(z) =- q yz--a-+-sm -
ZIII(z) 7r t a z 

Im ~11 (x) =- q a 1- (x/a) +(-)cosh -{zi(x)} 1{P} {v 2 x2 -la} 
ZIII(x) 7r t a x 
lxl Sa 

Method: Integration of page 5.11 
Accuracy: Exact 
Reference: Tada 1973 
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Crack Opening Area: 

Crack Opening Profile: 

Opening at Center: 

V(qy) y 

A 
2V(X,O) 

2 

A=~·-E.._ 
3 E' 

2v(x,O) = - 1 1- - + - cosh- -4pa {RiJx)2 (x) 2 
1 a} 

lxl<::a JrE a a X 

4pa 
80 = 2v(O, 0) = -, 

1rE 

Vertical Displacement at (O,y): 

2p a y . -1 a 1 y . -1 a 
{v::tJ ( )} ,(O,y)~,E,y 1+(:;;) -~- y-2a F(f! ~"nh y 

where _ {! (1 + v) plane stress 

a- 1(1) 
2 1_v plane strain 

Method: Integration of pages 5.11 and 5.11a or Paris' Equation (see Appendix B) 
Accuracy: Exact 
Reference: Tada 1985 

5.14a 
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Crack Opening Area: 

A=l(1r-~)pi 
3 E' 

Crack Opening Profile: 

4pa { ( 1) ~(x)2 1 (x) 2 
-1 a} 

2v ~;l's~ = E' 1 - ;;: y 1 - \~) - ;;: ~ cosh ~ 

Opening at Center: 

4pa ( 1) 80 = 2v(O, 0) = E' 1 -;;: 

Vertical Displacement at (O,y): 

2p ( a) { ( 1) ~ ( 1 y . -1 a)} v(O,y) = E' 1- ay 8y 1-;;: y a + y - y 1-;;: ~smh y 

where _ {! (1 + v) plane stress 

a - 1 ( 1 ) plane strain 2 1-v 

Method: Superposition of pages 5.1, 5.1a and 5.14, 5.14a 
Accuracy: Exact 
Reference: Tada 1985 
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y p 

T-'Y(x, 0) = q -{ 
a-y(x,O)} {p} (lxi)'Y 
Tyz(x, 0) t a 

('y > -1) 

lxl<::a 

where r('Y) = GammaFunction (See Appendix M) 

Methods: Fourier Transform (Sneddon); Integration of page 5.11 (Tada) 
Accuracy: Exact 
References: Sneddon 1951; Tada 1974 

NOTE: For special cases of 'Y = 0 and 'Y = 1, see page 5.1 and page 5.14, respectively. 

5.16 
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A 

Crack Opening Area: 

2 r(~'+ 1 ) 
A= 2pa ..fii 2 

E' r(i+2) 

Opening at Center: 

(/'+ 1) 4pa 1 1 r -2-
Do = 2v(O,O) = £1 · ..fii ·I'+ 1 r(i+ 1) 

where 

r(!') = GammaFunction(See Appendix M) 

Method: Integration of pages 5.11 and 5.11a or Paris' Equation (see Appendix B) 
Accuracy: Exact 
Reference: Tada 1985 

NOTE: For special cases /' = 0 and/'= 1, see pages 5.1, 5.1a, and 5.14, 5.14a. 
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{
o-y(x,O)} {p}{ ~}'Y 
Txy(x,O) = q y 1- G) (1' > -1) 
Tyz(x,O) t 

lxl Sa 

where r(I')Gamrna Function (See Appendix M) 

Method: Integration of page 5.11 
Accuracy: Exact 
Reference: Tada 1974 

NOTE: For special case of I' = 0, see page 5.1. 

5.17 
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y ~ 1 
oy(>)o)= p {,/1- ( ~.)~) ( t >-1) 

p 

X 

Crack Opening Area: 

2 r(lll) 4pa 2 

A=yv:rrr(1+2) 

Opening at Center: 

4pa 
80 = 2v(O, 0) = £1 V('Y) 

where r('/') =Gamma Function (see Appendix M) 
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t.o 

,.....,. 
)o 
'-J 

> 0.5 

t 
0 

0 0·2. 0.4 0.6 

=- t+\ 
l-t2 

Method: Integration of pages 5.11 and 5.11a 
Accuracy: A Exact; V(r) curve is based on accurate numerical values. 
Reference: Tada 1985 

5.17b 

0.9 \.0 
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n 

-0. 

u 

{ Z1 (z)} l{p}2i-i 
Zm(z) =2a t Ji-a2 

{ !I(z) }=_!_{P}[z~] 
Zm(z) 2a t 

{ K1 } = ± ~ {p }VM 
Km ±a 2 t 

Im{~~;(~)} = 2~ {~} [xVi -i] 
lxl :Sa 

Method: Integration of page 5.11 or by Stress Concentration Factor 
Accuracy: Exact 
References: Neuber 1937; Benthem 1972 



154 Part III 

_ ( ) t>y(x,o) 
CTy X,O = p 

resultant 

-----effect of crack 
- ) V(x,o) 
v ( x,o = Po/E' 

opening 

----- overlapping 

2pa (x) RJx)2 
2v(x,O) =-, · - 1- -

lxl<::a E a a 

Crack Opening Area of Right Half: 

Method: Westergaard Stress Functions 
Accuracy: Exact 
Reference: Tada 2000 

NOTE: Crack surface interference was ignored. See page 5.18b for the effect of surface interference. 

5.18a 

X 



5.18b 

<Jy(X,o)/p 
effect of 
crack 

Two-Dimensional Stress Solutions for Various Configurations with Cracks 155 

oyCx,o)/p resultant 

\ 
'.(~(x,o)/p effect of , ___ _ crack 

surface 
interference 
ignored; see 5. 18a 

Crack closes from x = -a to x = _ah 

p ( 2a)j=+ah Z1(z) =- z-- --a 3 z- a 

312 

KI,x~a = G) p,fi{i = 0.5443p,fi{i; KI,x~-a/3 = 0 
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Crack Opening Area: 

A = - 1rpa = 0.9308E::_ (2)3 2 2 

3 E' E' 

Method: Superposition of pages 5.1/1a and 5.18/18a 
Accuracy: Exact 
References: Seeger 1973; Tada 2000 

NOTE: Compare with page 5.18a for the effect of crack surface interference. 

5.18c 



5.19 

Crack Opening Area: 

Crack Opening Profile: 

Opening at Center: 
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y 
V(o,y) 

(o,y) 

Xo 

P (~o+a ) KI+a =--(1-a) ---1 
2y'mi x0 -a 

K1-a =--(1-a) 1- --P ( ~o-a) 
2y'mi x0 +a 

p 

2(1-a) { -!1-XO,± -IX} 
2v (x, 0) = 1 P sin xo a xa +sin -

lxl :Sa 1rE a- a a 

2(1- a) -1 a 
80 = 2v(O,O) = 1 P sin -

1rE Xo 

X 
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Vertical Displacement at (O,y): 

1- a ( a) { _, 
v(O,y) = 1rE' P 1 - ay ay cos 

2 2 } x0 - a -! x0 
----cos 

2 2 2 2 
xo +y vxo +y 

where 
a= {! (1 + v) plane stress 

! ( 1 ~v) plane strain 

Method: Integration of pages 5.9, 5.9a; A, 80 , One half of page 5.20 
Accuracy: Exact 
Reference: Tada 1985 

5.19a 



5.20 

p 

Crack Opening Area: 

Crack Opening Profile: 

Opening at Center: 

Displacement at (O,y): 
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y 

p a 
K1 =- (1 - a)----=== Fa ~ yx0 -a 

4(1- a) -1 
2v(x,0)= 1 Peas 

lxi:Sa 1rE 

2 2 
x0 -a 
-2--2 
x0 -X 

4(1- a) -1 a 
80 = 2v(O,O) = 1 P sin -

1rE xo 

p 

2(1 -a) ( a) { -1 v(O,y) = 1rE1 P 1 - ay 8y cos 
2 2 } x0 - a -1 x0 
---cos 

2 2 2 2 
xo +y Jxo +y 
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where 

a= {! (1 + v) plane stress 

! ( 1 ~v) plane strain 

Methods: Superposition of page 5.19; Paris' Equation for A, v (see Appendix B) 
Accuracy: Exact 
Reference: Tada 1985 

5.20a 



5.21 

where 
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y 

0 

2v(x 0) - 2h · F( <p, k) 
b:<:;!xl~a - K(k) 

h 
h 

b 

plane stress 

plane strain 

F(cp,k) = 1'1'---;==dcp=== 
o V 1 - k2 sin2 'P 

Q 
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Methods: Muskhelishvili's Method (Markuzon); Triple Integral Equations (Tweed) 
Accuracy: Exact 
References: Markuzon 1961; Tweed 1970; Tada 1974 

NOTE: For K(k), see Appendix L. 

The Westergaard Function is 

E'ha 1 
ZI(z) = 2K(k). y'} - i y'} - b2 

5.21a 



5.22 

where 
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Thin Rigid Wedge 
t 

y 

+ + + p + t 

E'ha 
P1 = -{;--:------,--..,...} 

2 a2 E(k) - b2 K(k) 

E'h 
Pl = - 2a{K(k) - E(k)} 

E'h 
PJ = 2bK(k) 

( P2.~p :G Ps) 

{ E'h } 1 (ii 
x~~a = 2+pa(K(k) -E(k)) kK(k) v~ 

- {- E'h iE(k) -b2K(k)}_l_ E 
x~~b- 2 +p a kK(k) V"b 

2v(x, 0) = 2h · F( 'P(~k)) + 4P~ {K(k)E(cp, k) - E(k)F( <p, k)} 
b:Sixi:Sa K E 

E = 2 
1 { E plane stress 

E/ ( 1- v ) plane strain 
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l 'P dcp 
F(cp,k)= , 

0 V 1 - k2 sin2 cp 

Methods: Triple Integral Equations or Superposition of page 5.21 and page 6.1 
Accuracy: Exact 
References: Tweed 1970; Tada 1974 

5.22a 

NOTE: 1. In (I), when p > p 1 , separation of contact surfaces occurs near x = ± b, and when p < p2, crack closure occurs near 
x=±a. 
2. In (II), when p > p3, separation of contact surfaces occurs near x = 0, and when p < p2, crack closure occurs near 
x=±a. 
3. For K(k) and E(k), see Appendix L 

The Westergaard Function is Z(z) = Z(z) + Z(z) 
p. 5.22 p. 5.21 p. 6.1 
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t 
(J 

t "t' f 
0 0 0 "C't 

ly 

j -a. 0 a. 

where 

1fj2 

K(k) = 1 drp 
0 V 1 - k2 sin2 <p 

(See Appendix L for values of K(k) and E(k)) 
Method: Muskhelishvili's Method 
Accuracy: Exact 
References: Barenblatt 1962, Erdogan 1962, Sib 1964 

( 

b 
y. r 
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y 

-a. 0 0.. d 

_ 1 { ~ (b±d (""- 1) ( + 1r ) _ Pb } KI±b - lMV b2 _ i PV d- -a-y ~ + ,., + 1 L lK(k) Qb+ K(k) [E(k)F((}, k) - K(k)E((}, k)] 

1 { 1.22 fb±d ("" - 1) ( 7r ) - Qb } KII±b = lM~ Qy d- -a-v ~- ,., + 1 1 ± lK(k) Pb+ K(k) [E(k)F(O, k)- K(k)E(O, k)] 

where - vb2 -cT 
(}- 2 2 

b -a 

B B 

F(O,k)=l drp , E(O,k)=1 V1-k2 sin2 rp drp 
o V 1 - k2 sin2 <p 

Method: Muskhelishvili's Method (See Appendix L for tables of K(k) and E(k)) 
Accuracy: Exact 
References: Barenblatt 1962, Erdogan 1962 
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t t to-
.... 

---
o-'------

{KI} -{a}y';b 1 [1 _ _!_{ 1 _E(k)}] 
Ku A- T y'1 - aA aB K(k) 

{KI} -{a}..j7ra 1 [1 _ _!_{ 1 _E(k)}] 
Ku B- T y'1 - aB aA K(k) 

where 

k = vfO!AO!B 

"h "h 
K(k) = 1 dcp , E(k) = 1

0 
V 1 - k2 sin2 cp dcp 

0 V 1 - k2 sin2 cp 

Method: Complex Potentials 
Accuracy: Exact 
References: Yokobori 1965 (or Kamei 1974), Isida 1973 

--· 
---
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-

-b 

l'-____________ __ -

{KI} 1 {p} a 
K11 =- Q 
Klll Fa T Vb2 -i 

±a 

{KI} 1 {p} b 
K11 =qQ ~ 
Klll V 7ru T V b - a 

±b 

Methods: Westergaard Stress Function or from Solution of Punch Problem 
Accuracy: Exact 
References: Galin 1953, Tada 1974 

The Westergaard Stress Function is 

p z 
Z(z)=;:~~ 

z -a -z 

6.4 

t 
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t t t t t 
0 0 0 0 0 

c 8 B c 

2a .. a-f-a.-
t--b-~--b 

t----- c ___ _,......,.,___ __ c -------!~ 

"h 
K(k) = 1 drp , 

o Vl-k2 sin2 r.p 

(See Appendix L for values of K(k) and E(k).) 
Method: Muskhelishvili's Method 
Accuracy: Exact 
Reference: Sih 1964 

"h 
E(k) = 1 V 1 - k2 sin2 r.p drp 
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o-
t t t :c t t 
0 G) G) Q G 't',t 

y 

cr..,._ 

~j 
X -a. 0 Q. 

w 
'1'(® ® " e e 

~ ~-? ~ l ~ 
0""' 

{ 
Z1(z) } 1 {a} _1 (cosw) 
~II(z) =:;;: T Wcos cos'~ra 
ZIII(z) T£ W 

{ :~ }={~}R 
KIII Tc 

Method: Westergaard Stress Function, etc. (Special Case of page 7.9) 
Accuracy: Exact 
References: Irwin 1957; Koiter 1959 

7.1 

-l-: 
.... 
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t t t t t~t ( 

)( C\. )< 

I 

w 
2 -1 E 

Crack Opening Area: 

Additional Relative Displacement at Infinity due to Crack: 

A 40"W ( 1ra) 
llcrack = /W = --, £n sec-

IrE W 
( /l = D. no crack + /lcrack) 

Crack Opening Profile: 

( JrX) 40"W -1 cos W 
2v(x, 0) = --1 cosh -----mi 

lxi:Sa 7r E COS W 

Opening at Center or Edge: 

40"W -1 ( Jra) 80 = 2v(O, 0) = --, cosh sec-
IrE W 
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Additional Vertical Displacements at (O,y) and (W f2,y) due to Crack: 

where 

v(O, y) = -- 1 - ay- cosh --- --20"W ( a) { _1 (cosh~) 7!}'} 
1rE 1 8y cosVf W 

w 20"W a . -1 sm w 1lJI { ( . h1l}') } v(-,y)=-(1-ay-) smh - --
2 1rE1 ay cos1ra W w 

{
!(l+v) 

a= !(_1) 
2 l-v 

plane stress 

plane strain 

Methods: Westergaard Stress Function, Paris' Equation (see Appendix B) 
Accuracy: Exact 
Reference: Tada 1985 

7.1b 

NOTE: !:!.crack /2, v(O, y) and v(W /2, y) are the vertical displacements aty = oo, (0, y) and (W /2, y), respectively, when uniform 
pressure O" is applied on the crack surfaces. 



7.2 

where 
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LL fifs 
z. 2,= -:z. 

-Cl 
C::::*==EI->' 

0 0.. -

ar;~~ l 1 
w _...., __ w 

z=x+iy 

(sinwf -(sinzrw-f +cos 7rJ? (sin vvf -(sin 7rJ?)2 

sin 1rz - sin 1rzo sin 1rz - sin~ 
w w w w 

I 1 - 0 { K } 1 { p} jwtan 1rwa [ a J { 1rz 
=- ay0 - cos-

K11 +a 2W Q sin W { +} 8yo W 

sinfV± sinV 

sinw =tsinV 

1rzo 
+cosw 

o 1ra + o 7rZo } Sill W- smW 0( 7rZo 7rZo) --'-'-----'::_:- + l cos- - cos-
sin 1ra +- sin 1rzo W W w w 

{
!(l+v) 

a= 1(_1) 
2 1-v 

plane stress 

plane strain 

Method: Westergaard Stress Function 
Accuracy: Exact 
References: Tada 1972a, 1973 
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L L 
p QLQ L L 

Zo=Xo-tl)'o 

y. 
-a n 

Q.JQ 
p + 

w w 

z=x+iy 

{ Z1(z) } = 2_ { P} [1 { _ }oyo _!!_] [{cosv (si~wf- (sin: f 
Zu(z) W Q + 8yo ( . nz) ( . nz0 ) 

smw - sm-w 

2 

{ Z1 (z)}-l{P}[{-} 8][ -1 Zu(z) -:;;: Q 1 + ay08Yo -tan 

(cos 7ra / cos 1rz) -1 w w -1 
~--~----~--~2 -tan 

1- (cosw/cos7r;) 

where 
{

!(l+v) 
a= 1(_1) 

2 1-v 

cos 1rzo 
w 

2 2 + 
(sin w) -(sin 1[;) 

plane stress 

plane strain 

Method: Westergaard Stress Function (Superposition of page 7.2) 
Accuracy: Exact 
References: Tada 1972a, 1973 

2 

(cos1f/cosfF) -1 
- 2 

1- (cosw/cos7r;) 

7.3 
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L t~.Q 

+ 
z;a\Yo 

-tl 

~Yo ~ 

L L 

++ 
~ ~ 

w -~-w 

{ z1 (z)} _ 1 { p} [ {-} 8] 7l)lo [ (sin wf +(sinh ~f -- 1 oyo- cosh-
ZII(z) W Q + 8yo W ( . 1rz) 2 +( . h 7!Jlo) 2 

SlllW Sill W 

{ z1 (z)}- 1{p}[{-} aJ[ _1 (coswlcosfVf-11 - - - 1 + oy0 - -tan 2 
211 (z) 7r Q 8yo 1- (cosW I cosh~) 

Im { ~~1f2)} = ~ { ~} [1{+}oyo ~J tanh -1 

lxl Sa 

2 

1- ( cosff I cosff) 
2 

1- (cosw 1 cosh~) 
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where 

{
!(l+v) 

a= 1(_1) 
2 1-v 

plane stress 

plane strain 

Method: Westergaard Stress Function (Special Case of page 7.2 or 7.3) 
Accuracy: Exact 
References: Tada 1970, 1973 

7.4a 
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j_ voo 

A 
Yo 
t 

~p 
w w 
z 

.... ,E: 2: 

1Voo 

( ) 
cosh 1l)'o 

K1 = Jrv }tan; 1 - ayo a~o ----r=====;c2==="W'====""2 

(sin~) +(sinh w) 

Crack Opening Area: 

{ ( 
h 1l)'O) } 8PW a -1 cos W 1!Jlo 

A=-- (1-ay0-) cosh --
7rE1 ay0 cos W w 

Relative Displacement at Infinity: 

Crack Opening Profile: 

4P ( a) -1 2v(x, 0) = - 1 1 - ay0 ~ tanh 
lxl<::a 1rE vyo 

2 

1- ( cosWJ / cosfV) 
2 

1- (cosWJ/coshT) 
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Crack Opening at Center: 

4P ( a ) -1 { sin w } 80 = 2v(O, 0) = -, 1 - ay0 -a tanh 
1rE Yo v ( 0) 2 

1- cosw/cosh~ 

where 
{

!(l+v) 
a= 1(_1) 

2 1-v 

plane stress 

plane strain 

Methods: Westergaard Stress Function, Reciprocity (see page 7.1a) 
Accuracy: Exact 
Reference: Tada 1985 

7.4c 
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L tQ 'I 
lp 
~I 

+ 
-z. 

+ 'Zo =~+tyo 

-a 0 Q ~xi 
-Zo 

Q~p Q 
p 

1---w w 

z=x+iy 

{ Z1 (z) } 1 { P} [ { _} 8 ] . 7l)lo r 
Zn(z) = W Q 1 + oyo 8yo smhw 

1- (sinwlsinfV) 
2 

{ Z1 (z)}-1{P}[{-} 8]r -1 Zn(z) -:;;: Q 1 + ay08Yo -tan 
(cos w I cos vvf -1 -1 ( 7rZ 7l)lo)l _,_____:.:. __ __:.:_.!....__....,..-tan tan -tanh-

( )
2 w w 1+ coswlcosh~ 

1{P} ~ = W Q V Wtanw 

2 
. h Z!l2. Z!l2. ( Jra) sm W { _ } 7!Jlo cos W cos W 
2 2 + a 31 

( 1ra) ( · hZ!l2.) W { 2 2} 2 cos w + sm w (cosw) +(sinh~) 

Im{i~~~J)} =~{ ~} [1{ + }ayo 8~J tanh-1 

2 

1 - ( cosff I cosfV) 

1 + (coswlsinh~) 
2 

lxl :Sa 
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where 

a = { ~ (1 + v) plane stress 

~ ( 1 ~v) plane strain 

Method: Westergaard Stress Function (Special Case of page 7.3) 
Accuracy: Exact 
References: Tada 1970, 1973 

7.5a 
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lvCD 
ty 

~~ 
I { 

I 
tx 

l_l 

'1 
Jp 

"'IE 

TvQ) 

p ~ ( {) ) sinh 2!1]. 
KI = VW V tan; 1 - oyo oyo ---;:====:o2=='=W=====:o=2 

(cosw) +(sinhZW.) 

Crack Opening Area: 

SP W ( {) ) { . -1 (sinhZW.) 7!Jlo} A = -- 1 - oyo- smh --- --
1r E' cyo cos Jra W w 

Relative Displacement at Infinity: 

Crack Opening Profile: 

4P ( {) ) -1 2 v(x, 0) = - 1 1 - ay0 -0 tanh 
1rE Yo 

Opening at Edge: 

4P ( {) ) -1 { 80~2 v(O, 0) = 7r E' 1 - ayo oyo tanh 

2 
1- ( cosWf' / cosfV) 

2 

1 + (cosw/sinhZW.) 
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where 

a = { ! (1 + v) plane stress 

! ( 1 ~v) plane strain 

Methods: Westergaard Stress Function, Reciprocity (see page 7.1a) 
Accuracy: Exact 
Reference: Tada 1985 

7.5c 
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y 

z=x+iy 

2 2 

{ 
Z1(z) } 1 { p} cos# (sin w) -(sin#) 
Zu(z) =- Q 

ZIII(z) W T (sinVf-sinV$) (sinVff -(sinwf 

~II(z) = ~ Q tan - 1 { 
Z1(z) } { P} r 
ZIII(z) T 

2 

(cos1ffJ/cosfV) -1 
2 

1- (cosw/cosV$) 

Jrb 
+i cot

W ( 2 )1 2 ·7rz ·7ra 

1 - (sin 1rb /sin 1ra) lie sin -1 (s~n w) , (s:n u;:) , sin 1ra 
w w smw smw w 

{ 
KI } 1 { p } R cos Jrb Ku = - Q W tan 1ra . fa 
K W T W smW 

Ill ±a 

sin 1ra + sin 1rb w- w 
sinw=t=sin# 
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{ ;(x) }-1{p}[(tanh-1
) Im Zn(x) -- Q -1 

Zin(x) K T coth 
lxl :Sa 

1- (cosWJ/cosff) 
2 

2 

1- (cosw/cosw) 
( -a <x <b) 

b<x<a 

Kb +cot
W 

( 

2 
2 • KX • KG 

1 - (sin Kb / sin Ka) II sin -1 (s~n JTa) , (sm w) , 
w w smw sinJf; 

where 

1'1' dcp 
II( cp, n, k) = --:--------:-.:.....,==== 

0 ( 1 - n sin2 cp) V 1 - k2 sin2 cp 

Method: Westergaard Stress Function 
Accuracy: Exact 
References: Irwin 1957; Tada 1973 

7.6a 

. Ka) smw 
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y 

z=x+iy 

{ 
Z1 (z) } { P } cos 1rb (sin 1ra) 2 - (sin 1rb) 

2 

z (z) =2_ Q W W W 
II W 2 2 2 

Zm(z) T { (sinw) -(sin#) } 1- (sinWJ/sinw) 

{ 
Z1(z) } 2 { p} _1 
~II(z) =:;;: Q tan 
Zm(z) T 

Method: Westergaard Stress Function 
Accuracy: Exact 
References: Irwin 1957, 1958a 
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_ ...... --+j ..... ,__ v:. -~+-1' 

Tv 
CD Tyco 

2P r::::!!!!_ cos# 
KI = yW V tan W ----;:==~2 ====:::<=2 

(sinw) -(sin"[$) 

Crack Opening Area: 

8PW -1 ( 1rb 1ra) A=--, cosh cos-/cos-
7rE W W 

Relative Displacement at Infinity: 

Crack Opening Profile: 

8P (tanh -1 ) 2v(x, 0) = -, -1 
lxi:Sa 1rE coth 

2 

1- (cos1ff/coslfi-) ( lxl::::: b ) 

( )
2 b < lxl <a 

1- cosw/cosw -

Opening at Center or Edge: 

2 

8P -1 
80 = 2v(O, 0) =-,tanh 

7rE 

1- (cos1ff/coslfi-) 
sin 1ra w 

7.7a 
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Vertical Displacement at (O,y): 

4P ( a) -1 v(O,y) = 1rE' 1 - ay 8y tanh 

Vertical Displacement at (W /2,y): 

v -,y =- l-ay- tanh 

2 

1- (cos1ijf'/cosW) 
(w ) 4P ( a) -1 

2 1rE' ay 
1 + (cos w 1 sinh w) 

2 

where 

{
!(l+v) 

a= 1(_1) 
2 1-v 

plane stress 

plane strain 

Methods: Westergaard Stress Function, Reciprocity (see pages 7.1, 7.1a, 7.4a, 7.5a) 
Accuracy: Exact 
Reference: Tada 1985 
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~('f,Y) 

~~ 
)C. 

I 

w ~j~ 2 

~ CD Tv (X) 

Crack Opening Area: 

21ra/. 21ra - sm-
W W 

4PW -1 ( 1ra) A = --1 cosh sec-
7rE W 

Relative Displacement at Infinity: 

Crack Opening Profile: 

4P -1( 1ra) 2v00 = Ajw = - 1 cosh sec-
7rE W 

4P -1{ 2v(x, 0) = - 1 tanh 
lxl:<:;a 7rE 

1- (cosfV/coswf} 
sin 1ra w 

Vertical Displacements at (O,y) and (W /2,y): 

2P ( {) ) 1 { sin 1ra } v(O,y) = 1rE' 1 - oy {)y tanh- W 2 v1- (cosw/coshw) 

~ 
2 

7.8 
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v - y = - 1 - ay- tanh (w ) 2P ( a) -1{ 
2 ' 1rE1 8y 

where 

Method: Special Case of page 7.7a 
Accuracy: Exact 
Reference: Tada 1985 

{
!(l+v) 

a= 1(_1) 
2 1-v 

plane stress 

plane strain 
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y 

{ 
Z1(z)} 2{p}[sin-1 (sinf$lsinVf) _1 
Z11(z) =- q +tan 7r 2 
Zlll(z) t 1- (sin WI sin w) 

(sinfVIsinfltf -~] 
1- (sinVflsinw) 

{ ZJ(z)} 2{P}1b{ _1 
~n(z) =:;;: q -tan 

(cos 1ra I cos 1rz) -1 w w dx 2 } 

Zlll(z) t o 
2 0 

1- (cosVflcosy) 

{ K } { p } ( · 1rb) I 2 Jra -1 sm W 
Kn =- q jwtan-·sin . 1ra 
Klll 7r t W sm W 

2 

1- (cosVflcosw) + 
2 

1 - (cos 1ra I cos 7rXo) 
w w dx 

2 0 2 

1- (cosVflcosw) 1- (cosVflcos7r~) 

Method: Westergaard Stress Function (Integration of page 7.6 or page 7.7) 
Accuracy: Exact 
References: Irwin 1957; Tada 1973 

7.9 
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P,.l .. P 

P(1 -a) r::::!!!}_ cos 1r; 
KI = VW V tan W ---;=====;2~==~2 

where 

Method: Integration of page 7.7 
Accuracy: Exact 
Reference: Tada 2000 

{
!(l+v) 

a= !(_1) 
2 1-v 

(sin 7f;) -(sin w) 

plane stress 

plane strain 
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Equivalent to Periodic Cracks with Symmetric Loadings 
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Stress Intensity Factors 

{ :~} = 1.1215(~)V7W 

Displacements at A 

{2v} = 1.454 .~{u}a=5.816{u}a 
2u E' T E' T 

2 w = 2Tea 
G 

Methods and References: K1 Integral Transform-Singular Integral Equation (Wigglesworth 1957; Koiter 
1965a, Bueckner 1966; Sneddon 1971a; Benthem 1972); Successive Stress 
Relaxation-Integral Equation (Irwin 1958b, 1960a; Lachenbruch 1961; 
Nishitani 1971a; Tada 1972a) 
Kn From similarity of free boundary corrections between Mode I and Mode II (Tada 1973) 
K1n Westergaard Stress Function, etc. 

Accuracy: K1 , Kn Within one unit oflast digit 
K Exact 

III 

Displacements were derived by Paris' equation (Paris 1957) (see Appendix B) 
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a-

t t t 

or 

Crack Opening Area: 

Crack Profile: 

TiltS 
_illo-
a~ 

K1 = 1.1215 a ,f/W, 

2 

A = 1.258 mr~ 
E 

4a V 2 2 (x) 8(x)=E' a-x D; 

y 

A 

D(~) = 1.454- .727~ + .618(~) 2 -.224(~) 3 

4aa 
80 = 8(0) = 1.454£1 

Method: A and 8 Paris' Equation (see Appendix B) 
Accuracy: A and 80 Within one unit oflast digit; 8(x) 1% 
Reference: Tada 1985 

S.la 

ff6(x) 
Q 



8.2 

Q T 
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p 

.---a-----t 
p 

2P 
KI = 1.297.-

Fa 

KII = 1.297. :. 

2T 
Km = ..jim 

Methods: K1 , KII Combined Method of Integral Transform and Paris' Equation (see Appendix B); 
Km Westergaard Stress Function, etc. 

Accuracy: Exact 
References: Ouchterlony 1975; Tada 1973, 1985 
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p 

Crack Opening Area: 

Crack Profile: 

2P 
KI = 1.297 . [;;;;; 

y7ra 

4Pa 
A= 1.454 £1 

y 

8P -la (x) 8(x) =-cosh -· D -
1rE 1 x a 

Method: A and 8 Paris' Equation (see Appendix B) 
Accuracy: A Within one unit of last digit; 8 1% 
Reference: Tada 1985 

8.2a 
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{ K1 } 2 { p } 1 { F(hfa) } KII =- Q 2 F(hfa) 
Kill VKa T V 1 - (hfa) 1 

t.4 
I 5~ 

1·2q'7 FC*) = t. 2q7- .2q7( ~)+ 
or -

~ -.............. F<~~ =- '· 3 
-. 3 (.£-)5/'t 

~ 
--........ 

............... 
............... 

1.0 
o.2 0·4 

Methods: K1 , KII Alternating Method (Successive Stress Adjustment) 
KII1 Westergaard Stress Function, etc. 

Accuracy: K 1 , KII 0.5% 
Km Exact 

References: Hartranft 1973; Tada 1973, 1985 

--.......... 
~ 
~ 

\.0 
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Crack Opening Area: 

cG) = 1.454- .727~+ .618G) 2 -.224G) 3 

Opening at Edge: 
8P -1 a (b) 8=-cosh -·H -

1rE 1 b a 

(b) (b).3S H -;;; = 1.681 - .384 -;;; 

Method: A and 8 Paris' Equation (see Appendix B) 
Accuracy: A and 8 1% 
Reference: Tada 1985 

8.3a 
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{ K:x: L i () 1 j f(b/11.) } 

~~ f = l ~ t-a. ~ Sii\
1 ~ t F ~b/o.) 

F(b/a.)= I. 3- o. 18 ! <I) 

ot Fe 'o/Q.)= 1. ~-.143:_ -.\2.o~)\.oi3(*)~ (2) 

1-0~--~--._--~--~--~--~--~--~--~--~ 
o o.'Z. o.4 o." 

-- l%. 

Methods: K 1 , Kif Alternating Method or Integration of page 8.3; 
K1II Westergaard Stress Function, etc. 

Accuracy: Empirical Formula (1) 0.5%, (2) 0.2%; Km Exact 
References: Hartranft 1973; Tada 1985 

0.8 1.0 



200 Part III 8.4a 

A 

0 

a. --...-1 

2 -1b (b) K1 = O'..fiW, ·-sin - · F -
1r a a 

or 

Crack Opening Area: 

or 

= 0'7raz. a(~) 
E' a 

(b) ( b)% G ; = 1.258 + .196 1 - ; 

-(b) ( b) 2 -1 b b ~(b)2 (b) 2 
_ 1 a G; = 1.454-.402; ·;:sin ;+.926;y1-\;) +; (.206-.257cosh z;) 
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Opening at Edge: 

Do = - · - sin - + -cosh - · Ho -4cm 2 ( -1 b b -1 a) (b) 
E' 1r a a b a 

or --·Ho -_ 4lm - (b) 
E' a 

H0 m ~ 1.681- 227~ [I+ (1 -~) m -';,] 
H0 G) = 1.681 ~(sin - 1 ~+~cosh - 1 ~) - .392~+ .14o(D 

2 
+.025 (~ Y 

Opening at x = b : 

4CTa 2 [RJb)2 -1 b b bl (b) Db=-·- 1- - sin ---fin- ·Hb -
E' 1r a a a a a 

or _ 4CTa - (b) --·Hb-
E' a 

( b ) [ ( b ) .320 ( b) .565] 
Hb ; = 1.681 1 - .215 ; 1-; 

-(b) 2 [ ~(b)2 -1b b bl Hb ; = 1.681:;;: y 1- \_;) sin ;-;fin; 

-~ ( 1-D [.382+ .143(D 
2 (1-~)] 

Method: A and 8 Paris' Equation (see Appendix B) or Integration of page 8.3a 
Accuracy: G 2%, G 0.5%; H0 1%, H 0 0.5%; Hb and Hb 1% 
Reference: Tada 1985 



202 Part III 

Stress Intensity Factors 

Displacements at A 

y 

.,_--a--~ 

2 
KIII = - t ,fi{i 

7r 

{ 2v} = l.?70{p}a= 1.390·~·.!_{p}a 
2u E' q E' 1r q 

2 1 
2w =-·-ta 

G 7r 

Method: Superposition of page 8.1 and page 8.6 
Accuracy: K1 , KII 0.2% 

Km Exact 
Reference: Tada 1973 
Displacements were derived by Paris' equation (See Appendix B). 

8.5 
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Crack Opening Area: 

A = ..1?!!:.._ (1 202) = 1 603~ (
4 2) 2 
3E' 0 0 E' 

Opening at Edge: 

( 4pa) pa 8 = -, (1.390) = 1.770----, 
1rE E 

Method: A and 8 Paris' Equation (see Appendix B) or Integration of page 8.3a 
Accuracy: Within one unit of last digit 
Reference: Tada 1985 



204 Part III 

Stress Intensity Factors 

Displacements at A 

{ lv} = 4·046 {p }a= 1.484. ~ (1 -2.) {p }a 
2u E' q E' 1r q 

Methods: K1 Integral Transform (Benthem) 
Kif From Similarity of Free Boundary Corrections (Tada) 
Km Westergaard Stress Function, etc., Stress Concentration Factor (Neuber) 

Accuracy: K1 , Kif 0.2% 
Km Exact 

References: Neuber 1937; Benthem 1972; Tada 1973 
Displacements were derived by Superposition of page 8.1 and page 8.5. 

8.6 
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p 

p 

Crack Opening Area: 

A= 2.349 pi = (1r- ~) pi (1.299) 
E' 3 E' 

Opening at Edge: 

8 = 4.046 - = 4 1 -- -pa ( 1) pa 
E' 1r E' 

(1.484) 

Method: A and 8 Superposition of page 8.1a and page 8.5a 
Accuracy: Within one unit of last digit 
Reference: Tada 1985 



206 Part III 

y 

p 

( 'i >-1 ) 

p 
I 

{
KI } {p} r(4l) {F('y)} 
Kn = q Va ( ) · F('y) 
KIII t r i + 1 1 

( ) .188')' + .488 
F')'=1+ 2 

(!' + 2) 

r (I') = Gamma Function (See Appendix M) 

Methods: Integral Equation (Stallybrass), Alternating Method (Hartranft), Integration of page 8.3 
Accuracy: K1 and KII 0.5% 

Km Exact 
References: Stallybrass 1970; Hartranft 1973; Tada 1973, 1985 

8.7 

NOTE: For special cases 'Y = 0 and 'Y = 1, see page 8.1 and page 8.5, respectively. 'Y does not have to be an integer; it can be any 
real value 'Y > -1. 
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p 

uy(x,O) = pG) 'Y ('Y > -1) 

Crack Opening Area: 

Opening at Edge: 

4pa 1 r(1j:l) 
8 = -, ·- · · {1.2967 · F('Y)} 

E v:rr ('Y+1)r(i+1) 

( ) .188"f + .488 
F"f=1+ 2 

('Y + 2) 

r ( 'Y) = Gamma Function (See Appendix M) 

Method: A and 8 Paris' Equation (see Appendix B) or Integration of page 8.3a 
Accuracy: 0.5% 
Reference: Tada 1985 



208 Part III 

{ 
K1 } 1 { p · F1 (Y)} 1 2 { Q} -- --·- ·F2 (Y) 
K11 - ,fi{i Q · F3 ( Y) ,fi{i 7r P 

T 1 T 
Kill=-· =-cosrp 

Fap Fa 

where 

[ %{ % } 
p 1 (Y) = 

1 + 2y
2
3 1.3 - .3 (~) .665 - .267 (~) (~- .73) 

( 1 + yz) Yz 1 + yz 1 + T 1 + yz 

p 2 (Y) = [-
1 

2 + y
2 

3 tanh -l (~) [1.3 - .375 ~ (1 - .4 ~)] 
1 + y ( 1 + yz) Yz 1 + Y2 1 + T 1 + T 

Method: Integration of page 8.3 
Accuracy: Formulas F 1 (Y), F 2 (Y), and F 3 (Y) 0.5% 

Km Exact 
References: Tada 1985, 2000 

8.8 



8.9 Two Dimensional Stress Solutions for Various Configurations with Cracks 209 

p 

T .T 

Yo 

H 
Yo 

0 T 

p 

CA) 

a~ 

(A) 

Q 

0 

Yo 
-= Y=tan 'P 
a 

2 1 2 
KIII = -T. = -T. COS<p 

,;;;rap,;;;ra 

(B) K1 = 0 

Klll = 0 

For F, (Y), F 2 (Y), and F, (Y), see page 8.8 
Method: Superposition of page 8.8 
Accuracy: Formulas F, (Y), F 2 (Y), and F, (Y) 0.5% 

KII and Km in (A) and K1 and Km in (B) are exact. 
Reference: Tada 1985, 2000 

(8) 



210 Part III 

K1 = G) y'7ffi(l.1215) = .56lay'7ffi 

K11 = ( -;:)v'1ffi(1.1215) = -.367av'1ffi 

Method: Direct use of page 8.1 or Integration of page 8.8 
Accuracy: The value 1.1215 is accurate within one unit oflast digit. 
References: Tada 1985 

cr 
2 

8.10 
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'P 2 -ih 
s = (7rf2) = :;;: tan ~ 

F11(s) = s [ 1.122 + (1 - s) (.915 + .26s%)] 

Method: Integration of page 8.3 or page 8.8 
Accuracy: 0.5% 
References: Tada 1985 



212 Part III 8.12 

P ( 2sin2 (} ) 2(} + sin2B 
K1 =.In sina:-cosa: (} . (} 

ya 2 +sm2 (}2 -sin2(J 

p 
p 

Method: Integral Transform 
Accuracy: Exact 
Reference: Ouchterlony 1975 

> > -1( 2sin2 B) 
K1 < 0 : a< tan 2(} + sin 2(} 

7r 
a=-

2 

P 2B+sin2B 
KI=-· 

Va ~ -sin2 (} 

a=O 

NOTE: For special cases of s = 112 and s = 1 (a = 7rf2), see pages 8.2 and 3.6, respectively. 



8.13 

s = ehr 

Crack Opening Area: 

Crack Profile: 

where 
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e = slT 

2Pa 
A= yVJiF(s) · G(s) 

4P (x ) v(x,O) = -, VJiF(s) ·H -,s 
1rE a 

F(s) = 
21rs + sin 21rs 

(1rs)2 -(sin 1rs)2 

2() + sin2B 

()2 - (sinB)2 

2 3 
G(s) = .1755 + .219s + .385s + .120s 

3/z 
s 

(X ) 1 [ -1 r:-x r:-x 1 ( X) ~ H -;;,s = ..j2 f(s)tanh y1--;;+g(s)·y1--;;+h(s)·3 2+-;; y1--;;J 

Forf(s), g(s) and h(s), see page 8.17 
Methods: K1 Combined method of Integral Transform and Appendix B 

A and v Paris' Equation (see Appendix B) and Interpolation 
Accuracy: K1 Exact; A and v 1% 
References: Ouchterlony 1975; Tada 1985 



214 Part III 

s - 6/'tf 

Crack Opening Area: 

Opening at Edge: 

where 

K1 = uV7fll · F(s) 

2 

A= u;~ {F(s)}2 

4ua 
8 = E'F(s) · G(s) 

( ) ·1755 + ·219s + ·385i + ·120s3 
F s = --------,,.--------

3/z 
s 

G(s) = v; 27rs + sin 27rs 

(1rs)2 -(sin 1rs)2 

8.14 

Methods: K1 Integral Transform and Integral Equation (Doran s ~ ·2), Beam Theory (s ~ 0), and 
Interpolation (0 < s < .2) 
A and 8 Paris' Equation (see Appendix B) 

Accuracy: K1 and 8 Better than 1 %; A Better than 2% 
References: Doran 1969; Tada 1973, 1985 

NOTE: For special cases s = l/2 and s = 1, see also page 8.1 and page 3.7, respectively. 



8.15 

s = ehr 

Crack Opening Area: 

Opening at Edge: 

where 
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K1 = u..fiW; · F(s) 

mra 2 2 
A= Ji" · '3F(s) · G(s) 

4ua 
8 = £1 · F(s) · H(s) 

2 3 
( ) .0585 + .196s + .333s + .013s 

F s = -----..,.,------3/z 
s 

2 3 
() .1755+.219s+.385s +.120s 

G s = -----..,.,------3/z 
s 

H(s) = V: 21l's + sin27rs 

(7rs)2 -(sin 7rs)2 

Methods: K1 Asymptotic Interpolation; A and 8 Paris' Equation (see Appendix B) 
Accuracy: K1 and 8 Better than 1%; A Better than 2% 
Reference: Tada 1985 



216 Part III 

s = elrr 

Crack Opening Area: 

Opening at Edge: 

where 

K1 = u..fiW; · F(s) 

2 
u1ra 

A = Ji" · G(s) · H(s) 

4ua 
O=E'·I(s)·J(s) 

2 3 
() .117+.023s+.052s +.107s 

F s = -------:;-,.-------
3/z 

s 
2 3 

G(s) = .1755 + .219s + .385s + .120s 
3/z 

s 
2 3 

() .1365+.088s+.163s +.llls 
H s = --------.,;------

3/z 
s 

2 3 
() .1463+.121s+.219s +.114s 

Is = --------.,.------3/z 

J(s) = v: 
s 

21l's + sin27rs 

(7rs) 2 -(sin 7rs) 2 

Method: Superposition of page 8.14 and page 8.15 
Accuracy: K1 and 8 Better than 1%; A Better than 2% 
Reference: Tada 1985 

8.16 
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s =e/lr 

Crack Opening Area: 

Opening at Edge: 

where 

8 = -, vlF1 (s) ·H -,s 4P (b ) 
KE a 

2 3 
() .1755+.219s+.385s +.120s 

F 1 s = -----..,.-------312 

s b (b)2 
(~ ) _f(s) +g(s)a+h(s) a 

F ,s- R a b 
1--

a 

( b ) 1 1 ( ~ b -i ~) b -i ~ b ~] 
G a's = v2((s) y1-a+atanh y1-a +g(s)·2atanh y1-a+h(s)·2av1-a 

( b ) -1 ~ ~ 1 ( b) ~ H a's =f(s)tanh y1-a+g(s)y1-a+h(s)·3 2+a y1-a 

f(s) = E_ 2K~+sin2Ks2 
V 2 (Ks) -(sinKs) 

g(s) = -1 - 3f(s) + fi (s) 

h(s) = 2 + 2f(s)-fi (s) 

( 2 3) 3h fi (s) = 1.103 + 3.615s - .718s /s 

Method: Estimated by Interpolation 
Accuracy: K1 and 8 2%; A 3% 
Reference: Tada 1985 



218 Part III 

p 
p 

Method: Integral Transform 
Accuracy: Exact 
Reference: Ouchterlony 1975 

2P cos(O- a) 
KI = -yla-a . -y-;;;;2""0 =+=so:=in~2;=;;0 

7r 
a=-

2 

2P sinO 
K1 = -yla-a · -,;'='2""'0 =+=so:=in""2""'0 

a=O 

2P cosO 
K1 = -yla-a · -v-;;;:2""0 =+=so:=in""2;=;;0 

2P 1 
K1 = -yla-a · -v-;;;:2""0 =+=so:=in""2;=;;0 

8.18 



9.1 

Stress Intensity Factors 

Two Dimensional Stress Solutions for Various Configurations with Cracks 219 

a 

M 
(\ 

M E'(} xi =3.975-=--·va aya 3.975 

K11 = Klll = 0 

Displacement (Relative Rotation at Infinity) 

Methods: Integral Transform (Benthem), Extrapolation from the Results by Boundary Collocation Method 
(Wilson) 

Accuracy: Within 0.1% 
References: Wilson 1969, 1970; Benthem 1972 



220 Part III 

~t f\M 9oh. 

~M 
I 

I{ 
~ ir:-~Q =reo 

a--1 

I ~M 
I 8o/Z JuM 
I K - +.Ji M f./if E' .ra) '12 :J:o- .j1f (ill:z - +./2 q a 

I 
e _ 32. M 

0 - 1T 'E.'O.t 

M 
K1 = 3.975-3- = 1.245K10 

a h 

Relative Rotation at Infinity: 

When e is prescribed: 

B= 15.80 M 2 = 1.551(}0 (= 1.245 2 Bo) 
E'a 

__ 1_E' Va __ 1_ ( ..fii E' ) _ K1o 
K1 - 3.975 (} a- 1.245 4v'2 Ba - 1.245 

Method: (Comparison of page 9.1 and pages 4.10, 4.10a) 
Accuracy: Within one unit of last digit 
Reference: Tada 1985 

9.1a 
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0.736Q 

a 

P (NoR tation) 0 

0T Q 

Ea-r Q. 

p 

2P 
K1 = 1.297 ·--

,fim 

2Q 
Kn = 1.297 ·-

,fiW 

2T 
Kill=--

,fim 

\ 

Methods: K1 Integral Transform (Benthem, Stallybrass), Kif Integral Equation (Tada), Boundary 
Collocation Method (Wilson), Km Westergaard Stress Function, etc. 

Accuracy: K1 0.1 %; Kif, Km Exact 
References: Koiter 1965b; Wilson 1970; Stallybrass 1971; Benthem 1972; Tada 1973 



222 Part III 

p 

~:--

•P 
/""1-, 

I : \M• P ( 0."7360-X) 

\ ~ ~ M• P(0.736Q-X) , ............ 
p tp 

( x ) 2P 
K1 = 3.522 -;;;- 0.368 ,fiG 

K11 = Klll = 0 

Method: Superposition of page 9.1 and page 9.2 
Accuracy: 0.1% 
References: Benthem 1972; Tada 1973 

9.3 

) 
I 
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o.;36'a 

k,Ll M=PJC o.23'a 
pt tp 

2P 
KI =0.464·-

Fa 

KII =Kill= 0 

Method: Superposition of page 9.1 and page 9.2 
Accuracy: 0.2% 
References: Benthem 1972; Tada 1973 



224 Part III 9.5 

s= 1-% 

2Q 1 
K11 =-· ·F(s) 

Fa V (a )2 1- Yb 

2T 1 
Klll =-. ---;===~ 

Fa J (a )2 v 1 - yb 

I.'S 

~ ~ ----h 
............. ~ 

...--
F<s)= 1-+.2q7J5 + S1 (1-s)/s 

v I 
0.2 o-4 o.& o.ca 1.0 

-s = (-o/~::> 

Method: K 1 , Kif Successive Stress Relaxation- Integral Equations; Km Westergaard Stress Function, etc. 
Accuracy: KI' Kif Estimated at 1 %; K Exact 

m 
References: Tada 1972a, 1973 



9.6 

!\. __ _p ,, 
I ' 
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GJ..__-..c }----F=======~ 

...,__a 

Method: Special case of page 9.6a 
Accuracy: Exact 
Reference: Tada 1973 



226 Part III 

p "-·,, 
I ' ~-~l 

Q 
.:::::.---------

Methods: Westergaard Stress Function, etc. (Simple Radial Stresses for P and Q) 
Accuracy: Exact 
Reference: Tada 1985 

9.6a 



10.1 

J 
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j 

I 

b!d 
1-a+a-J 
b-j 

--=~=-::;ED.....-:::::ED::-ED-=----

't. ' ~D"' 
I -+----.1c---t1.S 

I 
I 

; 1.41------+----+-----1-------~.t---+-+-1 

Ll' 

t 

Methods: K1 Expansions of Complex Stress Potentials (Isida) 
Kif From similarity of free boundary corrections (Tada) 
KII1 Muskhelishvili Method, etc. (page 6.1) 

Accuracy: K 1 , KII l% 
Km Exact 

References: K 1 Isida 1965a, 1970a; Kif Tada 1973; Km Erdogan 1962; Sib 1964 



228 Part III 

T 

Method: Special case ofpage 10.2a 
Accuracy: Exact 
Reference: Tada 1973 

10.2 

t:::. ':. ·:::::3 



10.2a 

p 
f'--
1' 
I ' 
a 

Two-Dimensional Stress Solutions for Various Configurations with Cracks 229 

Methods: Westergaard Stress Function, etc. (Simple Radial Stresses for P and Q) 
Accuracy: Exact 
Reference: Tada 1985 



230 Part III 

KI,A = (]'..jiW, ·FA(%) 

KI,B = (]'..jiW, · Fs (%) 

2 3 
FA(%)= 1- .175(%) -.245(%) (% :S: .8) 

2 
Fs(%) = 1- .145(%) (%::; .9) 

m Q.tt-----....L..-----L..----+--~~f------IO.CS 
LL v = Va 

plane stress 

plane strain t 0.6r-----.----r------f----~f---~---I0.6 

Method: Series Expansions of Complex Potentials 
Accuracy: Curves are based on numerical values with 0.1% accuracy 

Formulas: FA 1% for a;b < 0.8; FB 1% for a;b < 0.9 
References: Isida 1970a; Tada 1985 

10.3 
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t 

K1 = a ,fiG · F1 (s) 

Ku = a,fia · Fu(s) 

a 
s=--

a+h 

ES1! J 

0.2 t-----+----+-----+------1------4 .. =-230 

0 
0 0.2 

Methods: Singular Integral Equations, Beam Theory (s ---+ 1) 
Accuracy: Better than 1% 
References: Erdogan 1973, Tada 1985 

0.8 \. 0 



232 Part III 11.1 

ov=~=o 

h !y 
I 0" 

l..-2a-l 
)( 

CT' 

h l-2a-l 

-~ .r. 1.6 1.6 .. 
~ ....., 
lL 

t f.+ I .It· 

f.O ;;;.....--t.~--'-----1:-......L.-~:----'-----l;::----'--......J f .o o.2 o.4- o.s o.8 t.o 
-% 

Methods: Expansions of Complex Stress Potentials Combined with a Boundary Collocation Method 
(Isida), Boundary Collocation Method (Kobayashi) 

Accuracy: Better than 1% 
References: Kobayashi 1964; Isida 1971a,b 
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t 

t f 

KI,A = cr[lra ·fA<%.·%> 
Kx,s = cr Jwa ·Fa( "6;·f) 

: =O: Cenhll\ Crac.k 

:-1 : Semi-infinite 'P\tlte 

----FA 
-----Fe 

Method: Laurent's Expansions of Complex Stress Potentials 
Accuracy: Better than 1% 
Reference: Isida 1965a 

.6 
1-!51'7 

=.[i )( 1-122 



234 Part III 

o.G -~ 
0 ...... 
~ 

I 0.4 

0.2 

()= 

O"N = 

aM a 
2 b' 
3M a 
2(b~-cl) = 

KI= (j ./'rra. . Ft ca/b) 

.. ON bro.· F2ca/b) 

G(O.f\:,)= F2Co/b) = {t-C%)} F. Co/b) 
..f 1- Ofb J 1- 0./'o 

GC%-o) = th 
G(%-1) • 2/./rrt:..+ 

:Benthem 4 
GC%>= ~{t+i-(%)+1{%f- ~~(T)l+o.ttG4(%)} 

----- : Isida ,.. a." 
F1 ( o.) = t{ 1 ... o.407q (b) + o. t+5G (¥) } 

o.2 0·4 0.6 0.8 --- a. 
b 

11.3 

0.6 

o.lt 

0.2 

).0 

Method: From Stress Concentration Factor for an Elliptical Hole (Isida), Asymptotic Approximation 
(Benthem) 

Accuracy: Better than 1% [G(a/b) formula by Benthem] 
References: Isida 1956; Benthem 1972 
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O'"y = 't'JC = 0 

y 

I 
I 

s~------~--------------------------+-~----+48 

v = _E_·F(~ .h..) 
f'I ..frra b • b 

f 

0.2 0·4 0.6 o.S 
Cl - b 

Method: Boundary Collocation Method 
Accuracy: Curves were drawn based on results having better than 0.1% accuracy. 
Reference: Newman 1971 

1.0 



236 Part III 

-~ 

'3M 
cr= 2 b2 

cr. St-1 - a-
N= 2(b-at- 1-(%)1 

KI = a-.fifO . F1 (o/b) 

= trN-/TTO. • f2CC.Vb) 

G(%) = F2 (o/b) = (,_a)'~ F, C%> 
~1-o/b b . 

G (%•o) •I· 122 

~r---t-Ci(~p-1)= 4/('3Tr) 

~ o.&I----I----P~---1f-----1r------JO.& 
<.!) 

t #rr• O.'t-21f. 
O.If.l-----1----+----+----t-------!o.4 

G(~ )= ji{t+t<t-%>-+t<•-%l+ ~ < 1-%)} -o.4-?o(r-%)+o."3(1-%J 

o.21-------1-------l------t----t------to.2 

o.2 

Method: Asymptotic Approximation 
Accuracy: Better than 1% 
Reference: Benthem 1972 

o.'t - 0.6 o.s 1.0 

11.5 



11.6 

--

,... ,. ' 
~ 
'J 

U... t.O 

~ o.q 

-.......... 1'--

o.s 
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--

J t- o/b · F(%) 

~ ---
o.+ o.6 

-- o/b 

;~b 
~ 

"""' "' \ 
().~ 

Methods: Mapping Collocation Technique (Bowie), Integral Transform (Tweed) 
Accuracy: Curve was drawn based on the values having four significant figures for 0 :::; a;b :::; 0.9. 
References: Bowie 1970b; Tweed 1972a 

NOTE: For eccentrically located radial internal cracks, see Tweed 1972a. 



238 Part III 11.7 

p p 

(See page 11.6 for F(a/b).) 

Additional References to page 11.6: Libatskii 1965, 1967; Yamera 1965. For eccentrically located radial 
cracks, see Tweed 1972a. 
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p 

r-------~--------+--------+--~~~~~~--~1.5 

~=J.2tl7 

1.0 ~--'----~---'------'-::-----L--"~-.1....--~--'----'·0 o 0·2 o.4- o.6 o.ca 1.0 

~~·'b 

Methods: Mellin Transform and Integral Equation (Rooke, a;b :::; 0.6 ), Interpolated Asymptotically 
(Tada, a;b > 0.6) 

Accuracy: Better than 1% 
References: Rooke 1973b; Tada 1973 

NOTE: For eccentrically located radial cracks, see Rooke 1973b. 
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t---b-~~b-.-1 

1.4 

-f. 
\.J 1·2 IJ_ 

~ /1-%. f(o/b) 

1.0 

f 
o.~ 

0 o.2 0.4 0.6 

Method: Estimated Asymptotically 
Accuracy: Expected to be better than 2% 
Reference: Tada 1973 

-o/b 

11.9 

1-4 

1.2 

1.0 

o.ca 
o.ca r.o 
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alb ----+ 0 : F ----+ ~ { (1 + a) (fo + ~) - (2a - 1) ~ f } , 0 < yb ;; 1 

F----+ 1,Yojb = 0. 

7r 1 <Yo < a;b----+ 1: F----+ · 0- -- 1 
/J J 1r2 - 4 y'1 - %' - b -

where 

r-. 

{ 
~ (1 + v) plane stress 

a = 1 ( 1 ) plane strain 2' 1-v 

? 
~ 1.2~--+---4---~~~~-+~~~--~--+---1---~ 

~ 
'i~ 

~ 1·0 1.o 
'-' 
LL-

~~-~ ()
9 

For Y,(,cO.I,o.2S,O·S,o.~5: 
L:;, o. G,t--+--tt---/--¥7'-----+---+----1 p \ o.ne stress 

-y = o.'25 t Q4J-+-.f---V.'-H--+--~i----+---+-----r----r----;----+----I0·4 

L---~--~----~--~--~--~----._--~--~--~ 0 o-4 o. & o.ca J.o o.2 
--- o/b 

Methods: Integral Equation (Likatskii,Yo/b = 0.25,0.5,0.75, a;b < 0.7), Interpolated Asymptotically 
(Tada, a;b 2 0.7 andYofb = 0, 1) 

Accuracy: Better than 2% for any a;b and Yo/ b 
References: Libatskii 1967; Tada 1973 

NOTE: For special cases Yoj b = 0 and 1, see pages 11.9 and page 11.8, respectively. 
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y 

I 
I rPo 

/I 
I I 
1--l)y(X,O)=P.(~)2. 

I 

)1-':, GC%) 

11.11 

J_ 2. 
3 .{lfi_'t 

=·2'15 Q2~--~--~--~--~--~--~--~--~--~--~ 
o o. '2. oA· o. 6 

0.. 
o.s 1.0 

b 

Method: Reduced from the results for page 11.12 (Rooke: Integral Transform, Plane Strain, 
v = 0.2, 0.3, 0.4; Isida: Series Expansion, Plane Stress, v = 0.3) 

Accuracy: 1% 
References: Rooke 1972; Isida 1974; Tada 1985 

NOTE: For an application, see page 11.12. 
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where 
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Rotating Disc or Shaft 

a+ 1 2 2 { 3a- 1 (a) 2 } K1 = --pw b ..fiW, · F(%) - -- - G(%) 
4 a+ 1 b 

w = angular velocity 

p =density 

{
!(l+v) 

a= 1(_1) 
2 1-v 

plane stress 

plane strain 

For numerical values of F(a/b) and G(a/b), and more information, see pages 11.6 and 11.11. For 
eccentrically located radial cracks, see Rooke 1972. 
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~o-
.-..----0---~ .,__---D------.~ 

1.2 
1.122 

1.0 
0 

F(a/D) = 1.122 + O.l40(a/D)- 0.545t/D)2 +0.405(a/D) 3 

(1- a/D) lz 

o.2 0.4 o.e, o.ca 
__.,_ o/o 

_..-

t.2 

(.122 

(.0 
J.O 

Methods: Mellin Transform and Integral Equation (Tweed, a;D :::; 0.5), Asymptotic Interpolation (Tada) 
Accuracy: Better than 1% 
References: Tweed 1973; Tada 1973 
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,..... 
~ 0.8 

-~ 
~· "',..... 
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K:t = Po lrr a. · G ( a.;o) 

GC%) = 0.18'7 [G -ct~)-t-~(%-t)-7.35(~f(,-f,)(t-o.5~) 
(1-p)¥2 

~~6~-----r~~--+------+------4-----~ 
' 

( '- %)'3/2. c;. ( o/o) 

t 0.4~-----r------+-----==+-"""""""----4-----~ 
~~----__...,0.374 

~2~--~--~--~----~--~--~~~~--~--~--~ o 0.2. o."'\- o.6 o.s 1.0 
~ a.;o 

Methods: Extracted from the results of page 11.15 (Rooke; Integral Transform; a;D ::; 0.5), 
Influence Function (Sire) 

Accuracy: 1% 
References: Rooke 1973a; Sire 1989; Tada 2000 

NOTE: For an application, see page 11.15. 
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where 

~---o---~ 

w = angular velocity 

p =density 

{
!(l+v) 

a= 1(_1) 
2 1-v 

plane stress 

plane strain 

Rotating Disc or Shaft 

For numerical values of F(a/D) and G(a/D) and more information, see pages 11.13 and 11.14. 

11.15 
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t t 
0 0 

2h 

2h 

Methods: K1 Fourier Transform (Koiter, Benthem), Energy Consideration (Paris, Rice); K1u Westergaard 
Stress Function (Tada) 

Accuracy: Exact 
References: Koiter 1956, 1961; Paris 1955, 1960; Rice 1967; Benthem 1972; Tada 1973 

NOTE: For complete Mode III stress functions, see page 12.2. 
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G> 0 
lj 

0 0 
c 
( 

y f 
2h=H 

0 
2h=H 

~ 
J 

"" e e 

Method: Westergaard Stress Function 
Accuracy: Exact 
Reference: Tada 1973 

z=x+iy 

- H -1 ( ljf) ZIII (z) = Tc ·-;cosh e 

Tc H -1 ( ]l) w (x, 0) =-·-cos e 
x<::O G 7r 

12.2 

X 
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y 
2h=H 

T 0 

LH 2h=H 

rrb V 2rrb 
2T e-lf 1- e H 

Zm(z) =H. ( m _2lr/2) V _m 
eH - e H 1- e H 

2rrb 

- 2T -1 
Zm(z) =-tan 

eH -1 
_2Jrl 

1- e H 
7r 

2T 1 K -
m- ..jlj V 2rrb 

eH -1 

2T (tanh-1 ) w(x,O) = -G _, 
x:<;O 7r coth 

2rrb 

1-eH 

_ZJr.I 
1-e H 

( X< -b ) 
-b <x < 0 

Method: Westergaard Stress Function 
Accuracy: Exact 
Reference: Tada 1973 
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- 2t1b -i 
ZIII (z) = - tan 

7r 0 

2=o 

21rb } eH -l 
_2Jrl 

l-e H 

el! -l 
- 2lrl dxo 

1- e H 

2t 1 ( - 1rb) 
KIII = -; Vii cos- e H 

~ v _2Jrl 
w(x,O)=-t-lbln Vl-eH + l-e H dxo 

x<::O 1rG o J Z1rxo J _ 2= 
1-eH- 1-e H 

Method: Westergaard Stress Function 
Accuracy: Exact 
Reference: Tada 1973 

12.4 
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Kn = Tv'3iz (~ + 0.2865) 

Method: Fourier Transform 
Accuracy: Numerical value 0.2865 is believed to have accuracy within one unit of the last digit (obtained 

by numerical integration). 
Reference: Benthem 1972 
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~ ..... 
en 
I 

.::. 

u: ..... 
Cit 
I 

f 

b b/n 1 
5 = b+h = l+b/n = 1 +h/b 

Klt = ~ T /2rrb · F1Cs> 

- ""t ./sn · F2.(s) 

C.CS)=/f-S f;(S)• );: F2.(S) 

311" 
s-ocf-.o): G = 1 

s -1 ct_..m) :m f s+(1-S).It0·2111.5} 

0.2. 0.4 - 0.6 

s=-b
b+h 

Method: Estimated Asymptotically 
Accuracy: Expected to be better than 3% 
Reference: Tada 1973 

12.6 

o.~ 1.0 
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QT 

y 

2h=H 

-a o o. 
2h=H 

2T 
ZIII(z) = H ----;==========;2= 

(coshYJ/coshJ{) -1 

2T 
(

sinh 1rz) - . -1 H 
ZIII(z) = -sm . h1ra 

1r sm H 

2T V 1ra 
Kill= H Hcoth H 

2T 
(

sinh 1rx) . -1 H 
w (x, 0) = -Gsmh . h 1ra 

lxl2: a 7r sm H 

Method: Westergaard Stress Function 
Accuracy: Exact 
Reference: Tada 1973 
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-b -(l 

z=x+iy 

- 2T -1 
Zlii(z) =-tan 

7r 

2T J 1ra sinh 1J 
KIII =- H coth- ---;:===::::::;:::::::=:====:o= 

H H 2 2 

(cosh1J) -(cosh~) 

2T (tanh-1 ) w(x,O)=-G -1 
lxl ?. a 7r coth 

2 

1- (sinh7l/sinhJj) ( lxl > b ) 

( I ) 2 a < lxl < b 
1 - sinh~ sinh J: -

Method: Westergaard Stress Function 
Accuracy: Exact 
Reference: Tada 1973 

13.2 
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y 

21 {cosh -1 (cosh lJ j cosh Jf) _1 
ZIII(z) =- +tan 

7r 2 

(coshJf/coshfi) -1 

2 

- 2t1b -1 ZIII(z) =- tan 
7r a 

1- (sinh Jf /sinh#) 
2 dxo 

(sinh Jf /sinh fi) -1 

( hJrb) 2t 1ra -1 cos H 
KIII = - V H coth-cosh -----:rra 

1r H cosh H 

Method: Westergaard Stress Function 
Accuracy: Exact 
Reference: Tada 1973 
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.. 
"' J.l' .. 

tE 

t f to-
000'l"'! 

.. ~6~--~--~--------+-~r----+~------+-~~---i 

.! 

l ~~~--~-----4-------+~~=-~------~0.4 
S+o(t•o): G:r. • G..11 • 1 

0.2 

s-1 Cf-): G:r• .{fii 
C:.m:mli/tr 

F":~u =) to.nh(f·~) 

~ss<o.~ : Isld4 

0.6 - S - a. 
- Q+h 

o.s \.0 

14.1 

Method: K1 Fourier Transform (Fichter), Expansions of Complex Potentials (Isida), Asymptotic 
Approximation (polynomial of degree ten) (Benthem) 
Km Stress Concentration Factor (Neuber), Westergaard Stress Function (Tada) 

Accuracy: K1 Estimated at 1% 
KmExact 

References: Fichter 1967; Isida 1971a; Benthem 1972; Neuber 1937; Tada 1973 
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0 0 0 0 ~1 

0 

z=x+iy 

f 
2h=H 

t 
2h=H 

Tc 
ZIII (z) = ---;===="========;;'2 

1 - (sinh H /sinh fi) 

( 
h 1fZ) - TcH -l cos H 

ZIII(z) =--cosh -h7ra 
1r cos H 

( 
h 7rX) Tc H -l cos H 

w(x,O) =-G ·-cos -hna 
lxl :":a 7r COS H 

Method: Westergaard Stress Function 
Accuracy: Exact 
Reference: Tada 1973 
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~ g 

: ~ f y 
T.. ! ;r 2h=H 

-d -bg 0 ib Q t •X 
T T 

2h=H 

: g ! 

e ~ e 

- 2T -1 
ZIII(z) =-tan 

2 

1- (cosh7l/coshJf) 
7r 2 

(coshJf/coshJ{) -1 

2T . / 1ra cosh Jf 
KIII = H v H tanh H ----r===""2~====:;=2 

(sinh}}) -(sinhJf) 

w(x,O) = 2T (tanh=:) 
lxl <::a 1rG coth 

2 

(cosh7l/coshJf) -1 
2 

(cosh }j /cosh H) -1 
( lxl < b ) 

b < lxl::; a 

Method: Westergaard Stress Function 
Accuracy: Exact 
Reference: Tada 1973 

14.2 
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...d-.b~b Q 

f 
2h=H 

f 
2h=H 

g:~ t 

z=x+iy 

2t { ZIII(z) =-; 
sin -1 (sinh 1rb/sinh 1ra) 

H H +tan-1 
2 

1- (sinh H /sinh]{) 

- 2t1b -1 
ZIII(z) =- tan 

7r 0 

2 

1- (cosh]ljcoshlf) dx 
2 0 

(coshfi/cosh]{) -1 

( 
. h7rb) 2t 1ra . -1 sm H 

KIII = - J H tanh- sm --=----7fZi 1r H smhH 

t lb w (x,O) =a ln 

2 

(coshfi/coshlf) -1 + 
2 

(cosh]ljcosh7!) -1 d 
2 xo 

lxi:S a 7r 0 
2 

(coshfi/cosh-]f) -1-

Method: Westergaard Stress Function 
Accuracy: Exact 
Reference: Tada 1973 

(coshfi/coshfi) -1 
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a a;h 1 
S=--=--=--

a+h l+a/h l+h/a 

K1 = ao ..fiW. · F 1 (s) 

= aoVh ·F2(s) 

"' u:.: o.f>r-----t---f--+-~--+----+-------1 o.6 
"' 

L( o.S 
Q-------~~--~~--~~---

f o.~r-----r-t----+----~~--+------to.~ 
0 1ii S<0-4q : Is ida 
0 0 

0.2 o.a J.O 

Methods: Expansions of Complex Potentials (s ::; 0.49, Isida), Interpolated Asymptotically 
(s ~ 0.49, Tada) 

Accuracy: Better than 1% for s ::; 0.49, estimated at 3% for s ~ 0.49. 
References: Isida 1971a; Tada 1973 

14.4 



14.5 Two-Dimensional Stress Solutions for Various Configurations with Cracks 261 

... 
u. -UJO.S 
I -v .. 
u: -II) I = 0.' 
~ 

t O.'t 

a a/h 
5 = a+h = 11'0/h = 1 + h/a 

Kn =- -r./Tro. F, <s) 

= '"t .{3h FaCS) 

G(S)= it=S F,CS) ... I-S Fa_(S) 

-~~ 
S+O(o/h ... O): G a 1 

S+ t (O/h .. oo): G =8fs+(i-S)'/.)"'t 
trSt 0,28'5 

0.2 0·4 0·0 
Q 

S= O.+h 

-----"t 

"'t ------

o.s 

Methods: Asymptotic Approximation (Benthem), Dislocation Distribution (Kamei) 
Accuracy: Better than 1% 
References: Benthem 1972; Kamei 1974. 

o.a 

o.& 

o.4 

1.0 



262 Part III 

a a;h 1 
S=--=--=--

a+h l+a/h l+h/a 

1.0 

"' lL..I!!I 

~ 0.9 

' (4 

~ 

~o.G 

u.iii 
"o.4 
H 

0 Fichter u. 0 

t (0.14-<S<o.ql) 

0.2 

0 
0 

Methods: K1 Fourier Transform (Fichter) 

o.6 a. -.s=--
Cl+h 

Kill Westergaard Stress Function (Tada) 
Accuracy: K1 1% , 

Kill Exact 
References: Fichter 1967; Tada 1973 

14.6 

1.0 

o.a 

0.6 

0.4 

o.z 

o.s 1.0 
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~ 
~ 0.6 

LL 
... 
H 

LL t ~4 

Kn = (]'..fiW, · Fn (s) 

a 
S=--

a+h 

Fx<s) ::= 1- .2GJ'3 s [ '- et-s)~t) 
F:m..<s)~1-.2q3s2 

Q 
~~=-

~ a+h 

t f 

(two cracks) 

t::==:::::::J~ 

2h 
!===:::::::I_L 

~2a~ 

Methods: Series Expansion of Complex Potentials (Isida, 0 < s < 1/2), Dislocation Distribution (Kamei) 
Accuracy: F1 and Fm Better than 1% 

FII Expected to be better than 5% 
References: Isida 1972; Kamei 1974; Tada 1985 



264 Part III 

~ 

t t t to-
0 0 00Tt. 

~ o.sr----t-t--+---J\T--t--.3.,~~--t----+---___::::::""'ll 
1.1!: 

.. 
~ ~6r-~r---~--------~~~--~~~----~~~~~ .. 
J ... 

f t-f----j,___t---::A.--:-+------t---.3o~-"'"*------l o.4 
s-o(11-+o) :Gt"I.IZZ, G11=1 

0·2 

s .. t(f-+ao): G .. ~:=bhr 
Gs•./iTv 

F.z = Jt:Anh(l;~) 

o.4 0·' - S- Q 
- O+h 

o.s 1.0 

Methods: K1 Asymptotic Interpolation (Benthem), Mapping Function Method (Bowie), 
Body Force Method (Nishitani); Km Stress Concentration Factor (Neuber), 
Westergaard Stress Function (Tada) 

Accuracy: K1 1% , 
Km Exact 

References: Neuber 1937, 1958; Benthem 1972; Tada 1973; Bowie 1973; Nishitani 1976 

15.1 
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t.r 

a afh 1 
S = C1 -T h = I t 0/h = I+ h/a 

kJr= 'T:{TfO. ftCS) 

= ~ ./3h F2(S} 

G<S)=/t-sF,Cs)= t-s fi(S) 
./TrS/3 

'· 2 .--+-----.-

\.12~ 

s-oc'h -.o): G = \.122 

s-1 ( ~ -+oo): G = lfs[ s -+Ct-sJ"1 
0.2"&.1 

G 

~ o.9t---f---+--"'-<:-~--+------+---~--+------t o.ca 
I -o,J .. 

I.L ,..., 
II) 

I ~&1-------1-----~~~-~~-----+------10·6 

.. 

0.2 

Method: Estimated Asymptotically 
Accuracy: Estimated at better than 3% 
Reference: Tada 1973 

o.4 - 0·& 
Q 

s = "Ci'+l\ 
o.s 
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CJy = '"rxy = 0 

b b/h 1 
s=--=--=--

b+h 1 +b/h 1 +h/b 

s ---> 0 G ---> 0) : Fl = 1 
F2---> ~G) 3/2 = ~c ~ s) 3/2 

Methods: s ~ 0 Solution for a Semi-Infmite Crack (page 3.6), s ~ 1 Theory of Beam Bending 
Accuracy: Exact for both s ~ 0 and s ~ 1 
References: s ~ 0 Irwin 1957, etc., s ~ 1 Gilman 1959; Barenblatt 1962 

16.1 
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(Yy = 'Cxy - 0 

b % 1 
S=--=--=--

b+h 1+% 1+% 

Methods: s ~ 0 Solution for a Semi-Infmite Crack (page 3.7), s ~ 1 Theory of Beam Bending 
Accuracy: Exact for both s ~ 0 and s ~ 1 
References: s ~ 0 Tada 1973, s ~ 1 Gilman 1959; Barenblatt 1962 
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JLLUJ~~~lLLLuuJ~~~~ 
'f h tA=o, V"=n-~>O:h 

pla.ne 
:========:::i----1--->' st-ress 

n U.=OI \T:- (I-:'&)CT_h 

trrn77Zr~ZZ~l!n~[f::f.@2~>o-h 
<.l-\>)E 

Method: Energy Consideration 
Accuracy: Exact 
Reference: Rice 1967 

K1 = 0 · uv'h plane stress 

vl-2v ""h K1 = · uv n plane strain 
1-v 

16.3 
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~-----------J ______ _ 
Y h '\r= ~h , T.x-FO 

p\o.ne 
~==============~-r--~x stress 

'\r=-{h, TX'i = 0 

------------T------- '~ For plo.ne stro.in: U"=± ~ crh 

t t t t 

Methods: Energy Consideration (Paris, Rice), Fourier Transform (Benthem) 
Accuracy: Exact 
References: Paris 1955, 1960; Rice 1967; Benthem 1972 

See page 12.1. 
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Method: Westergaard Stress Function 
Accuracy: Exact 
Reference: Tada 1973 

See page 12.2. 

0 0 

16.5 

h 
=0 

'W' =-'11 h. 
G 

0~0 0 

2h. 



16.6 

See pages 12.5 and 12.6. 
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2ft 

* 
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a % 1 s=--=--=--
a + h 1 + % 1 + h/a 

s---+ O(%---+ 0) : F1 = 1 

s---+ 1(%---+ oo): F2 = 2jy'3 

J.O 

"' 0.9 u::: 
~· .. 
Ill 

-Ill; 
11 0.6 

l.C 
~· .. '"' 

1/1 
.!. 
........ 0.4 

t 
02 

~ 
\ ~ r-

" ~ :1'%'\ 

-

I I 

M2 (I-S) . Fj =~~·Fz 

""' ' O::SS<o.47 I "d o---o: Sl Q 

O.I4<S<MI. F" ht >E I< • ,.. er 

I I 
0.2 0.4 0.6 

Q 

s= a+h 

o.t 

17.1 

I .0 

-

0.8 

-

-
0.4 

-
0.'2 

-

I 
J.O 

Methods: Expansions of Complex Stress Potentials (Isida), Fourier Transform (Fichter), Theory of 
Beam Bending (s ~ 1) 

Accuracy: Order of 1% 
References: Fichter 1967; Isida 1971a 
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() 

t t t 

2h 

~24-=1 Jh 
t 

See page 14.1. 
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fiW s---->O(a/h---->0) :F1 = l,F2 ----> V""h 

s ----> 1 (~ ----> oo) : F2 = v'1=7 
F1 ----> v'i=7 Via 

1.0 

o.s 

,..tf_j_j_j_j_j_j_j~_L~ 

,.=~Crh r 
U=O 

~=~!:Jk-2tl_j 
"17777777777 ... 

')) .. 0 1.0 

o.a lf4-=M51r 
F2 o.s 

jt4-.. o.vt.f> 

0.11 

"' o.61--1--~=>t-----'~~--+-----+--------lo.6 
u:.: 

u: 

'I>= Poisson'a Ratio 

v= o, o.S 
o.I4<S<o.ql : Fithter 

0.2.1+----+-"' )( +---+~~--! 
, .. o.a 
os s< o.4- : Isida 
o----o 

0-2 - S - 0. 
- 4-th 

0.8 

17.3 

Methods: Expansions of Complex Stress Potentials (Isida), Fourier Transform (Fichter), s ----+ 0: Solution 
for Infinite Plate, s ----+ 1: Energy Balance (Rice) 

Accuracy: Order of 1% 
References: Fichter 1967; Rice 1967; Isida 1971a 

NOTE: For plane strainF,(s--> 1) = v'"f=2V/(1- v), etc. 
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V3Jr (a) 3/2 
Fi -+-- -

2 h 

2.0 ,---,---,---,-----,,-----,,---,---,---,---,----, 2.0 

o.l't<s<o.7z. F. ht 
0 0 . 1c er 

0.2 1.0 
Q 

S = O+h 

Methods: Fourier Transform (Fichter), s ____, 0: Solution for infinite plate (page 5.9), s ____, 1: Beam bending 
Accuracy: Order of 1% 
Reference: Fichter 1967 



276 Part III 17.5 

i t 

See page 14.6. 
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a % 1 s=--=--=--
a + h 1 + % 1 + h/a 

o.s 

o., 
LJ... 

t 
0. 

p 
K1 =-·F(s) 

,fiW 

o.t 

Plane Stress 

0.6 
v = Poisson~ Ratio 

o. 14 < s< o.ql : fic:hter 
0 0 

o.~ 

0.2 o.4 o.& o.s 1.0 

- S=-a
a-th 

Methods: Fourier Transform (Fichter), s ----+ 0: Solution for an Infinite Plate (page 5.9) 
Accuracy: Order of 1% 
Reference: Fichter 1967 
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a % 1 
S=--=--=--

a + h 1 + % 1 + h/a 

K1 = ~·g(~!a) ·Fl(s,~) 

= ~ (~) {g(~) r F2 (s, ~) 

t.4 

ic.!""%-1·5:1 v-~{sct)t ~ ~ '·o 
1-- ~ ~ 

~2 b 
(I-s) ·F,cs. o;> 

~ 
-~ ........ 

o~-e:,6 ~ ~ ~ =~c~i1s~fi(s. ~) 
r--o:.~ ............. 

8 0.2~~ 
"'3 

6 

T 

0. 2 

0 
0 0·2. 

Method: Interpolated Asymptotically 

~ ~ ~ 
.......... .......... '" ............ ..... 
~ ~~ 

~ ~ 
~ 

o.4 o.6 
_....E.. 

a 

Accuracy: Expected to be better than 5% for any s and b /a 
Reference: Tada 1973 

~ 
~ 
~ 

"' 
Q.8 
~ 

S=O 

0·1 

0·2 

o.s 
o.'t

o.s 
o., 
0."1 
0·~ 
o.q 

,.ol·o 

NOTE: F(s--> 0, bJa) (page 5.11), F(s--> 1, bJa) (beam bending), F(s, 0) (page 17.4), F(s, bJa--> 1) (page 3.6). 

17.7 
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0.8 

LC 
"'"' ell 
I 

....... 

IL 
1'"\ 
ell 
I 

.._, 

t 

a % 1 
5 = o.+h = 1+% = '"' hfa 
Klt == T:,fifO... Ft (S} 

= T {3h. F2CS) 

S+o(%~o): Ft =I 

F2.-~ 
s-.t (9-h .. «~>: 

c:r.,•T,c'l-=0 

~ ....... ~~--~--_... __ _ 
<t-s)fz~ 1·13S+Ct-s}r.o.215" 

(1-S)Ft ~ ~{1.13ST(t-S)x~2 
~~~~~~-=~~ 

o.t4<S<o.ql 
0 0 : Fichter 

0-4 0-6 o.s 
- s- « - 4+h 

Method: Fourier Transform 
Accuracy: Order of 1% 
Reference: Fichter 1967 

0.8 
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1----- za _ ____,,... 

U= a;= o 

1~----- 20.---t•l 
U=- ~h, oy= 0 

c:=::==·-r 
2h 

l=2o.=l }h 

See page 14.5. 
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a a;h 1 
S=--=---=---

a+h 1+a/h 1+h/a 

s-+ o(~-+ o) : F1 = 1, Fz-+ {J 

s-+ 1G-+oo): 
(1- s)F2 c::: 0.56s + (1 - s) x 0.43 

Lf' 
,:.. 
Ul 
I 

........ 

' 
LC 
"'"' 1/1 

.!... ....... 

i 

o.t4<S< o.qr • F' ht 
0 0 . rt er 

Method: Fourier Transform 
Accuracy: Order of 1% 
Reference: Fichter 1967 

- - a s-~ 

D.(, 
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a a;h 1 
S=--=---=---

a+h 1+a/h 1+h!a 

0-5 

L?' 0.4-
~ 

f/) 

~~~ 
P o.3 
l.L ... 

F ~-2-
2- yfi05 

p~ 2 (a) 
I ---+ V 1 057r h 

~ 
I 

\ 
1-

~ ~ ~ , 
~ 

3h 

cit,... 
II) 

I 

.._, 0.2 

~ ~ ~ ~ot% 
~s ', 

o ~ s<o.43 I .d 
0 0 : Sl 0 

1 ~ ..... - .......... --1---
o. 1 ' " r-

I l I I 

0.2 o.'t- o.G o.'B - S - 0. -a:tll 

17.11 

o. 5 

-

o. 

o. 3 

-

0· 2 

-

0. 

2. 
.r.=o. = 0. II 0 

, .. u"" 

t.O 

Methods: Expansions of Complex Stress Potentials (Isida, 0 < s < 0.43, Interpolated Asymptotically 
(Tada 0.43 < s < 1), s----+ 1 Theory of Beam Bending 

Accuracy: 1% for 0 < s < 0.43, better than 5% for 0.43 < s < 1 (exact for s ----+ 0 and s ----+ 1) 
References: Isida 1971a; Tada 1973 



17.12 Two Dimensional Stress Solutions for Various Configurations with Cracks 283 

a a;h 1 
S=--=---=---

a+h 1+a/h 1+h!a 

s -+ 1 (~ -+ oo) : F2 = ~ 

Fl-+~#a 

1.0 r---'T""~~T--r--~----r---J'--T---,r.;-::-;;-:,..--.,-----.1.0 

+--.-f-----t'-'-7-"'--~-+-----1/1-~L=O//S't 

PI ane Stress 
~ 

0.6 

1.[ o.s 

f 0.4 0.4 

: IsidQ 
0 

0.2 0.2 

Methods: Expansions of Complex Stress Potentials (Isida, s < 0.47), Interpolated Asymptotically (Tada, 
0.47 s < 1); s ~ 1: Energy Balance (Rice) 

Accuracy: 1% for s < 0.47, estimated at better than 3% for 0.47 < s < 1 (exact for s ~ 0 and s ~ 1) 
References: Rice 1967; Isida 1971a; Tada 1973 

NOTE: For plane strain, F, (s---> 1) = "\1~;v , etc.; for v = 0 see page 14.4. 
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See page 14.4. 

lJ;=~~ 
( plane stress) 

\1: = ,_\)'2.-h 
0 e. .... 
( plane. strain) 

17.13 
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See page 18.2. 
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t t (5" t t 

~T 
' 2h 

I J 

11'= "t:~'l = 0 T y 

X 

0" 

J-------, 
1J"= gh I Tlty•O 

pi o.ne. y 
stress 
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KI = CJ/rra ·F<%· ~) 

.. 
~ -ll-

-
Method: Laurent's Expansion of Complex Stress Potentials 
Accuracy: Better than 1% 
Reference: Isida 1971a,b 

18.2 

2h 
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1.11 

-~ ..c 
\.4 

" 

* '-" 
U-

f 1.2 

:y 
I 

.1-------, T I U•O 
'IT='-~crh· 

h E 1'1 
plane . stress 

KI. = o-~na·F<l;-. ~) 
v - 0.3 plane stress 

-

\.8 

\.6 

1·4 

\.2 

Method: Laurent's Expansion of Complex Stress Potentials Combined with a Boundary Collocation 
Method 

Accuracy: Better than 1% 
Reference: Isida 1971a,b 
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o.s 

u. 
v = 'lg 

t pla.ne stress 

o.G 

O·'t 
0 Q.2 o.~ 0·6 

__.... a 
b 

Method: Series Expansions of Complex Potentials 
Accuracy: Curve is based on numerical values with 0.1% accuracy 

Formula 1% fora/b:::; 0.8 
References: Isida 1970a; Tada 1985 

18.4 

0.8 

0.(, 
\ 

\ 

0·4 
o.1J J.O 



19.1 

-
)\.()--

4 
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Q.2 

t 

Q, 
S- R+ a. 

to-

K:x = ().[ifO. ~(S) 
K:m:= t;_.frrO. Fa<S)·SinY l 4 

F)I.<S)=(\-A.)FoCS)i'AF1<s) ~ 
F .m: < s > = J 1-c 1 -s>4 //5 =/r.-C 2':"'---:s7)(-:-2---2 s-+~5 ... :;'7) 

Fo<s) = o.S'(3-S)[l-t 1.2.Jt~(r-s)"J 
Fl (5) = I -t(I-5)[.5'-+.'74-3(1-S)'I.) 

o.4 o.6 
-s-~ R+Cl 

3 

,.o 

Methods: Mapping Function Methods (Bowie- Mode I; Sih- Mode III), Boundary Collocation Method 
(Newman) 

Accuracy: F0 and F 1 curves are based on numerical values with expected accuracy of 0.1 %. Formulas F0 

and F 1 1 %; FIJI Exact 
References: Bowie 1956; Sib 1965a; Newman 1971; Tada 1985 
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t to- t 

- -
)I.(S-

- )l.(j 

-
~ ~ a- ' 

4 
s = ......fL_ 

R+C1 

1<1 = cr-/'rra. ·fi<s> 

F~ (S) = ( t-"-) Fo(s)i"i\ F ,<s) 
3 

f 0 (S) =( 1+.2.(1-S)+.'3(t-s)') f 1(S) 

u: F. (S) = 2.2lt-3-:L.E.4S·H352S,_-·1lt-8S 3 

" KlL =~.{;To. ·fli'(S)·sinl" 
If 2 

t 

o.2 

Method: Mapping Function Method 
Accuracy: F0 and F1 Better than 1% 

FIII Exact 

Fo Fm:cs)=}f(2-sj12 

0-4 o.G 
- s=_g__ R+Q 

o.~ 

References: Bowie 1956; Yokobori 1972 (or Kamei 1974); Tada 1985 

3 

2 

J.O 

19.2 
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t 
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2·51------t--
S=~ 

R-t-tl 

KI - p.(TrO.. f>. (S) 

F,._(S)= (t-)l.)fo<S)-t l\Ft(S) 

Fo = (t-5) [.'37-t .ltBS( 1-S)'l.-+.'r 5'1(1-S~ 
F1 = 1 + (t-s)[S-t.'Tit-3(•-s)] 

Method: Boundary Collocation Method 
Accuracy: Curves are based on numerical values with 0.1% accuracy. 

Formulas F0 and F 1 1% 
References: Newman 1971; Tada 1985 
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h 

4 

K1 = o-~rra · F ( ~ _, ~ , ~ ) 

3 

~ = 2 

LL 2 

1 
1 

0.25 

0.2 0·4 o.& o.s -
Method: Boundary Collocation Method. 
Accuracy: Curves were drawn based on the results having better than 0.1% accuracy. 
Reference: Newman 1971 
See also page 19.11. 

19.4 

J.O 
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Method: Conformal Mapping 
Accuracy: Exact 
Reference: Sih 1965a 



294 Part III 

0 0 0'l.t. 

c 

0. b--t---

where 

For Circular Hole, 

Method: Conformal Mapping 
Accuracy: Exact 
Reference: Yokobori 1972 (or Kamei 1974) 

2 ( 2 b-e) s s --
b+c 

19.6 
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where 

For Circular Hole, 

Method: Conformal Mapping 
Accuracy: Exact 

0 0 0~ 

®®®~ 

s+1 
Klii =TeV7r(b+c)-2-

i -1 

( 2 b-e) 
s s - b+c 

1 ( R )% c=b=R:K =T..fiW·- 1+--
m ' v'2 R+a 

Reference: Yokobori 1972 (or Kamei 1974) 
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121------t-

6t+----r-

lL 

o.2 

t to- t 

--t-b+a 

K1 = a-.jva. · Fcs .~1;> 

s .... o(-i-o): F--J.I22·1<t 

s-1 (~..,.CD): F ... t/rs 
F -1.t22 

0-4 

-
Methods: Boundary Collocation Method (Newman), Body Force Method (Nishitani) 
Accuracy: Curves were drawn based on the results having better than 0.1% accuracy 
References: Nishitani 1969; Newman 1971 

19.8 

J.O 
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Method: Integral Equation 
Accuracy: 3% 
Reference: Berezhnitskii 1966 

t to- t 

s = b':. a ' Kt = I + 2 ( ~ ) 

K::t = o-hro. · f(s,%) 

s-o(~-o): F-t.I22·Kt 

s-t C%""POO): F- 1/./2 
C»-b,a : F--1.122 

o.4 --
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• 1/) ...., 
u.. 

l.n.. 0. 
10 b =0 S,.,. b+O 

'CF==Jfs) Kx=<r~-rra· F<s.~ %,) 
I 
I s.o(%-.o):f-.l.t22·Kt 

s S .... l (.$1;-.ro): F~ V{S 
h »b., a : F-+J.J22 

\ 

+ 

~o- + 
K = a:y<b.~ o) 

t cr 

19.10 

(b,O) 

o.2 o.4 o.6 o.9 t.o 
___... h - h/t) 

2 b+ h - ' -\- h,/t, 

oo~--~--~----~--~--~----~--~--_.----~---
0·2 o-4 o.& o.'a \.O 

--.s=~ 
b-t-0. 

Methods: Mapping Collocation Method (Neal, s 2 0.25), Estimated (Tada, s < 0.25) 
Accuracy: Expected to be better than 5% for s < 0.25, better than 2% for s 2 0.25 
References: Neal1970; Tada 1973; Savin 1961, 1968 (K1 values) 

NOTE: Neal's results for small cracks (s < 0.25) appear to be too large. 
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o-
t t t t t t t 

0 o.2 

I 
I 

o.'B J.O 

Methods: Boundary Cllocation (Cib = 0.25, 0.5; Newman), Estimated by Interpolation (Cib other than 
0.25, 0.5; Tada) 

Accuracy: Accurate for c I b = 0.25, 0.5; better than 5% for other values of c I b 
References: Newman 1971; Tada 1973 

NOTE: For c;b << 1, see page 19.1 and 2.1. See alsop. 19.4. 
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+ t + + t t fG"' 

10 ........ 

,........ 

-1-D ... 
ul-0 
"dl~ & t-----lt----tl--l---+--1---1--~--+-------1 
'-' 
LL 

-
Method: Estimated by Interpolation 
Accuracy: Better than 5 % for any d I c , c I b , and £I b 
Reference: Tada 1973 

NOTE: For c;b << 1, see page 19.8. 

19.12 
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d 
1 ~-r---r---r---r---r---r--__,r--__,r--__,r--~c=a:> 

~-r----4-----~----~--~~ 

(j 

~~+---~----~----44 
~-r-----4------~----43 

~~~~--~====~==~~2 

---r-----+----11·5 

t t t t t 

o.s 

0.25' 

0·1 

..4=- o 
0~--~--~--~--_.--~----~--._--~--~--~c 

o o.2 o.G o.e t.o 

Method: Estimated by Interpolation 
Accuracy:f(dfc = oo, cfb) Exact 

f(dfc = 1, Cfb)J(dfc ____, 0, Cfb) Accurate 

For all other values of d / c , accuracy is expected to be much better than 5 %. 
References: Tada 1974 
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'-" u.. 

~4 
t 

0 
II 

~ 

....... 
...... 

...... 

Method: Estimated by Interpolation 

f'\A-
II 
0 

....... 
........ ........ 
'ff ............. 

....... __ 
"if- .............. ----

Accuracy: Better than 5 % for any d I c , c I b , and £I b 
Reference: Tada 1973 

NOTE: For c;b << 1, see pages 19.13 and 2.6. 

19.14 

t t t 

------ .-/ 

/ 



19.15 

-
'\ 

U) 

"" 
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~=0 
CF= t.I2Z~ 

I o t+-----=-fl-"--+-

G 1--1-----+ 

S=~ 
b+O. 

~= o-.{im·f(s.f,) 

~ 4r-;+--~---r----+----+---~ 

t 

0 ~--~--~--~----~--~--~--_.--~~--~~ o o.2 o.4 o.6 o.ca 1.0 
--s= o. 

b1"0. 

Methods: Stress Relaxation (Superposition) (Nishitani; c I b = 1f2, 1, 2 and 0.2 ::; a I b ::; 1 ), Estimated 
by Interpolation (Tada) 

Accuracy: Better than 2% 
References: Nishitani 1973; Tada 1973 
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,.... 
C!!.o.s~---~-----+--~----~f
ur 
""-J 

LL 

\!! 
fDA 

19.16 

t to-t t 

Cl 
5 = D.+ b 

Kx = a-./1ro.. F (s., p) 
klL- 0 

0~--~--_.--~~--._--~--~----~--~--_.--~ 
0 0.2 0.4 0.6 

__.,. s = (1'! b 

Method: Conformal Mapping 
Accuracy: Curves are based on accurate (0.1 %) numerical values (Hasebe 1978). 
References: Hasebe 1978; Tada 2000 

\.0 
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1. 2 ~___,,---___,,---___,,---___,,----~-r---.----r---r------. 

\1)' 
'-' 
ll' 
~ 0.41---~-+------f-

t 

0 0.2 o.4 

Method: Conformal Mapping 

s- a. 
4-t-b 

KI. = (1"./'iftJ. F:c (S_, "() 

KJL = t:rJ1ra. f][ ( s,l') 

Accuracy: Curves are based on accurate (0.1 %) numerical values (Hasebe 1980). 
References: Hasebe 1980; Tada 2000 

\.0 
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t t t(j 

[1=A [ 5 8] Fiu(A) = y~·0.15 (1-A) -A(1-A) 

F1P (A) = 1 · [o.637- 0.224(1 -A) 4 +0.75VA(1 - A)3 (0.3 -A)] 
y'A(1 -A) 

1 
Fnp(A) = · 0.145(1 -A) 

y'A(1 -A) 

FIM(A) = 1 
3 · [o.424-0.15(1-A)4 +0.2VA(1-A)912 ] 

VA(1 -A) h 

1 [ 4 2 3] FnM (A) = 3 · 0.85(1 -A) +0.12A (1 -A) 
VA(1 -A) h 

Method: Conformal Mapping 
Accuracy: FIP, F IM 0.5%; Fila' FilM 1 %; F1a, F1Jp 2% 
References: Hasebe 1981; Tada 2000 

NOTE: All approximate formulas (Tada 2000) are based on accurate (0.1%) numerical values (Hasebe 1981). 

19.18 
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t t tO" 

~ [ -12.5(6)] h,(A) = y -----x- · 0.018 + 0.069 e -

~ [ -8.9(1AA)] 
FIIcr(A)=y-----x-· 0.156-0.067e -

FJp(A) = 3 · 0.379 + 0.624A- 0.062 e 1-A 
1 [ -12(.....4..._)] 

VA(1 -A) h 

F11p(A)= 1 
3 · [o.126-0.24A-0.023(1-A)5 ] 

VA(1 -A) h 

1 [ -9(1~A)] FIM(A) = 3 · 2.005-0.72 e 
VA(1 -A) h 

FllM(A) = 1 
3 · [ -0.228 + (1- At ( 0.577- 0.2A + 0.8A2 )] 

VA(1 -A) h 

Method: Conformal Mapping 
Accuracy: FIP, F IIP' F1IM 1 %; F1~, Fn~' F 1M 2% 
References: Hasebe 1987; Tada 2000 

NOTE: All approximate formulas (Tada 2000) are based on accurate (0.1 %) numerical values (Hasebe 1987). 
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a 
s=--

R+a 

t to- t 

\0 

o.G~---~---~~-~~-+----+----~ 

u.. 

t 
a~r-------~------~r-----~--------r-----__, 

Method: Boundary Collocation Method 

0·4 0.6 
0. 

--- s = R-ta 

Accuracy: Curves (solid lines) were drawn based on the results having 0.1% accuracy. 
Reference: Newman 1971 

t.O 

20.1 



20.2 

6 

s 

4 
u.. 

t 
3 

2 

I 

t 
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t t 

_...,. /' /' --~ / 
I' 

\.IS 
/ 

,.25 ------- / 
~ • l.S 

2 

4 
IX) 

I I 
0.2 o.4 -
t(j t 

t 

./ 

------ // 
....... -- ~.; 

1 I 
o.& o.-a 

i-

!\ 

~--\ 
i-

1.0 I 

Kto= 1 + 2 

... ~ 
1---

I I 
O.lt R 0.8 

-cr 

\.0 

+ 
--;r 

I 

-

-
I 

\.0 

Methods: Boundary Collocation Method (Newman), Expansions of Complex Stress Potentials (Isida) 
Accuracy: Curves were drawn based on the results having 0.1% accuracy. 
References: Newman 1971; Isida 1973 
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t 

K':r,A= CJ bra · ~ (d~R · :) 

Kx,s=O"./iTQ· Facf-R, :) 
FA 

-----Fe 

Method: Expansions of Complex Stress Potentials 

~aA§R 
d-R 

d 

20.3 

Accuracy: Curves were drawn based on the results having 0.1% accuracy (thick solid and dashed lines). 
Reference: Isida 1970a 

NOTE: The values of F. for a; (d _ R) --> 1 were taken from p. 19.2 where>.= 0. 
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m 

FA 
----- Fs 

-

u. -0.2 ,..........,.._:::--=..:..::.r---~:..;.....~--~.,-------=~-4'~~~~ 

-
cr ---

-

-o.s 1----~---+-----'--+----'----+--.....__--+------'---t -o.t 
o.2 o.4 o.6 o.a 1 o 

Method: Expansions of Complex Stress Potentials 
Accuracy: Curves were drawn based on the results having 0.1% accuracy (thick solid and dashed lines). 
Reference: Isida 1970a 

NOTE: The values of FB for a/ ( d - R) --> 1 were taken from p. 19.2 where A = 1. 
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.. 
< 

LL 

f 

2 

K:r~A= cr.[rrO. · ~ Ca~ ·t) 
KI..s=O" fiTti ·Fe ( d~R ':) 

a. 
-d-R 

Method: Expansions of Complex Stress Potentials 
Accuracy: Curves were drawn based on the results having 0.1% accuracy. 
Reference: Isida 1970a 

20.5 

1.5 

o.s t.O 
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0 0 

1------.ti --.-! 

J.2-----t 

s1 [-1 (s1 _.!.) (s1 _.!. + s2 _.!.) + (s1s2 + -1 - 2) !iill] 
. 1,----;-:---------,- 2 s1 s1 s2 s1s2 K{J(5 

Klii,A = Te v 1r(b +c)----'~--;===============---""'--'-"'" 

where 

For Circular Hole, 

Method: Complex Potentials 
Accuracy: Exact 

(i - b-e) (s2 - sJ) (s1 _.!.) (s1 _.!.) 
' b+c s1 s2 

"h 
E(k) = 1 V 1 - k2 sin2 'P dcp 

Reference: Yokobori 1972 (or Kamei 1974) 
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u~[ () 1-cos2a(sin~f(cos~) 2 
. (· ()) 3 ( 3())] 

KIA = 2 COS 2 · 2 + Sill 2a Sill 2 +COS 2a - l 
1 + (sin~) 

u~ [. () 1- cos2a(sin~f (cos~f . (. ()) 2 () . ( 3())] 
KIIA = Sill- · - Sill 2a Sill- COS- - Sill 2a - -2 2 ( . ()) 2 2 2 2 1 + slll 2 

t++O" 

t t t cr 
Method: Conformal Mapping (Muskhelishvili) 
Accuracy: Exact 
References: Muskhelishvili 1933; Sib 1962b 

{ K1 } = u~ {cos~} 
KII 1 ( . ())2 sin~ + Slll2 2 

21.1 
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Method: Superposition of page 21.1 
Accuracy: Exact 
Reference: Tada 1985 
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H = H(B) = E(k)/K(k) 

k=sin(J 

7r!z 
E(k) = 1 V 1 - k2 sin2 <p drp 

KIA = - v' '11R tan() --+ cos 2a 2 + cos () - + sin 2a cot() 1 + sin () - --u [ H { 2 2(1+sin
2 B)} ( 2 cos2

())] 

2 2-H 2-H H 

u.~[1-H ( 2 1 +sin2 B) ] KIIA = 2 v 1rR cot() 2 _ H - cos 2a cos () - 2 _ H - sin 2a sin() cos() 

tT ---ft-~~~--~ ... 

cr 

- • t t 

(><) 
cr + t ta-

4 • 4 

t t t 
o-

-

Method: Conformal Mapping (Muskhelishvili) 
Accuracy: Exact 
Reference: Tada 1985 

u ( 2 2sin2 ()) K1 = 2 v 1rR tan() 1 + cos () - 2 _ H 

u.~(3-H) 2 Kn = 2 v 1rR cot() 2 _ H sin () 

Kn = - v 1rR cot() 1 + cos () - ------u ~[ 2 2+sin2 ()] 

2 2-H 

Kn = uV1rRcoto(1 -H) 
2-H 
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H = H(B) = E(k)/K(k) 

k =sinO 

[ { 
2 2 ( 1 + sin2 

())} ( 2 cos2 ()) l 
KIA = TV7rR tan() cos 2a 2 + cos () - 2 _ H + sin 2a cot () 1 + sin () -~ 

·~[ ( 2 1+sin2
()) ] K1IA = TV7rncoo u - cos2a cos ()- 2 _ H - sin2asinBcosB 

( 
2 cos2 ()) 

K1 =TV1rRcotB 1 +sin B-~ 

Kn = TV1rR cot B(- sin() cos B) 

K1 = TV1rRtanB [2 + cos2 ()- -
2 _,_( 1....,+,.---s-:-in:-

2
-
0"-)] 

2-H 

. ~ [ 2 1 + sin2 
()] 

K11 = TV 1rn em u - cos () + 2 _ H 

Method: Superposition of page 21.3 
Accuracy: Exact 
Reference: Tada 1985 



318 Part III 

T.t 
000 

® 

'i® 
® 

®®® 
'le 

Method: Conformal Mapping 
Accuracy: Exact 
References: Sih 1965a 

KHIA = TeV1rRsinB cos (a-~) 

~ 
0 
0 --
G 

® 
® 

..rzz:® 
l 

KIII = Te V1rR sin(} (cos~ + sin~) 

= v'2TeV7rRsinBcos(*-~) 

21.5 
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t t 
Semi-Elliptical Arc Crack 

-

See Narendran 1982. 



320 Part III 

y 

See Narendran 1982. 

Parabolic Arc Crack: 

2 
x = 4Ay, lxl ~ a 

-1 a 
a= 2tan 2A 

K1 = pv'1ffi[Fn (a)+ Fn (a)] 

Kn = pv'1ffi[Fm (a) +Fnz(a)] 

21.7 
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t t t (J 

.B 

T 
a 

~ A 
)\() .,._ 

-- f-a. a--j 

a 
l_ 

t ~ J o-

KIA= (]'..jiW (1.0863- .2227.A) 

KIB = (]'..jiW ( -.2227 + 1.0863.A) 

-

Method: A Special Case of page 21.10 and/or page 21.9 
Accuracy: 0.1% 
References: Tada 1985; also Stallybrass 1969; Rooke 1969 

-. 
~ }\CT -



322 Part III 

-
--

t 
b 

t t t () 
B 

A t 
b ~0. 
i 

-o--

1.0 I I I ~ 

/ r-

r- v 
I 

1- I 

o.s 

O.b 

v 
r- I 
v I I 

0.2. 

0 
0 0.2 

Method: Alternating Method (Special Case of Page 21.10; .X= 1) 
Accuracy: Curve is based on numerical values with 0.1% accuracy. 
Reference: Tada 1985 

I 

KIA = a,f/W, · F(s) 

K1s =aM ·F(l -s) 

a 
S=--

a+b 

I 

I 
o.s 

-

-

-

-

-

,.o 

21.9 
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')t..t$ 

...... .. 
-

1-2 

(.122 

t t 
t 

B 

b 

t A 

b ~a- -a~ 
i 

' ' 'a-
I I 

I-

... 
-A.O' 
.... 

I I 

/F, (S) 

~ 
I'--

KIA = a,f/W, ·FA (s, A.) 

K1s =aM· Fs(s, A.) 

I 

a 
S=--

a+b 

I 
1.122 

I-
FACS,A)= F,Cs)-+ A.F2 (t-S) 1/ -
FB (S,.A) = E.CS) + A.F, (1-S) 

\.0 1.0 

1-

~0.6 

r-

I-

0.'2. 

I-

0 
0 

I 

I 
kf,(S~ 

I 
/. 

v 
I I 

0.2 o.4 o.G o.s 
0.. 

~s= a+b 

Method: Alternating Method (Simultaneous Integral Equations) 
Accuracy: Curves are based on numerical values with 0.1% accuracy. 
Reference: Tada 1985 

-

-

-

-

I 
\·0 
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where: 

_ TeMsin[('y- (3)- m(3{ +a) J {sin(~)}'" 
Kl/Jz - ----;=='===o=;==7=~~=----'--"-

1 Jcosf3(cosf3- cos a) sin(a!§) 

_ Tgy'Jmsin[('y + (3)- m(327r +a) J {sin(~)}'" 
Kl/Jz - ----;=~=o=;==7=~~,----~ 

3 Jcos f3(cos (3 +cos a) sin( a2§) 

sinf3 = msina 

!!_ = cos§-cosa {sin(a+f3)}'" < 1 
a cosf3+cosa sin(a-(3) -

o::;m::;l 

Method: Conformal Mapping 
Accuracy: Exact 
Reference: Sib 1965a 

21.11 
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Method: Conformal Mapping 
Accuracy: Exact 
Reference: Sih 1965a 

\ \ '', \ \ ' ' \\\ ..... ',' ,,\ .... _ ,, -- ..... --

y 

n=1,2,3, ..... 



326 Part III 21.13 

t t to-

-
()- -a--

K1 = uV7fll · F(n) 

G(n) = 2R, n 2:2 ( Ouchterlony) 

1 1 
or G(n)=2-1.050--.243 2 , n2:1(Tada) 

n n 

Total Area of Crack Opening: 

2 
n----> oo: F(n) ----> ..jii 

2 

A= u;~ S(n) 

S(n) = {G(n)} 
2 

n---->oo:S(n)---->4 

or An~oo = 2An~2 

Methods: Integral Transform and Integral Equation, Conformal mapping 
Accuracy: Both formulas for K1 have better than 0.5% accuracy; A better than 1% 
References: Westmann 1964; Williams 1971; Kitagawa 1975; Ouchterlony 1975; Tada 1985 
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t t 

'\ 
\ 
\A 

1 ( 1 1 1) FA(n)=.r.; 3-3.25--.642+1.63 
yn n n n 

n ?_ 1 

Method: Estimated by Interpolation (based on results for n = 1, 2, 4, and oo) 
Accuracy: Expected to be within 1% 
Reference: Tada 1985 
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Method: Integral Transform 
Accuracy: Exact 

or 

Reference: Ouchterlony 1975, 1976 

21.15 
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~ 

-cr 

- ~ 

2.5 .---.,...---, 

~ ~ ~() 
a. 

5 = R-tQ. 

K'J:. =cr./ITO.· F1 ( 5, n) --11:: 
~ 
~ 

<o,J I 

u:- -I~ 
In 
0 

f 
...;. 
I 

('I 

-~~ 
II ,.... 
t: 

" i 
II) -1L 

0 
0 1.0 

__.., S=~ 
R+a 

Methods: Conformal Mapping (Ouchterlony; s:::; 0.6, n :::; 15), Asymptotic Interpolation (Tada; s > 0.6, 
n :::; 15 and 0 < s < 1, n > 15) 

Accuracy: 1% 
References: Ouchterlony 1975; Tada 1985 



330 Part III 21.17 

0.. 
5 = R-t-a 

"""' 
k:r. = p./rro. · f"'(s,n) 

f;._('5, n)=(I-A)f.,(s.n)+ A.F. (s,n) tl) 
I 

~ O.SH+-\--\--\--\-~~......3o,~~.,-~=---,----r---r--, ,..... 
c 

rJ=IDO 

Methods: Conformal Mapping (Ouchterlony; s :::; 0.6, n :::; 15), Asymptotic Interpolation (Tada; s > 0.6, 
n :::; 15 and 0 < s < 1, n > 15 ) 

Accuracy: 1% 
References: Ouchterlony 1975; Tada 1985 

NOTE: For F 1 (s, n), see page 21.16. 
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: h 

t r t 
E,~ 

~ a a 
b 

1.4 

1.2 

tf 
t 1.0 

"\) -1)' ... 113 

FA } ~-----+---~,........po~~~--to.s 
____ Fs plane stress 

------FA plane strain 

0·2 0.4 o.s 
a - b 

Method: Expansions of Complex Stress Potentials 
Accuracy: Curves were drawn based on the results having 0.1% accuracy. 
Reference: Isida 1970a 



332 Part III 

:h h 
r==J I ! I c:::3 

( tS_JI.!) 

t f t tS' (J rr' e - E' 

t t t t + t t t t 
<I> (JI) <I l (:0:) <Il 

e.v E~ '))' 

- -

v = ~' ... 'Ia 
plane stress 

------- plane strain 

o.2 

Method: Expansions of Complex Stress Potentials 
Accuracy: Curves were drawn based on results with 0.1% accuracy. 
Reference: Isida 1970a 

22.2 



PART 

IV 

THREE DIMENSIONAL 

CRACKED 

CONFIGURATIONS 

0 A Semi-Infinite Crack in an Infinite Body 

0 An Embedded Circular Crack in an Infinite Body 

0 An External Circular Crack (A Circular Net Section) or a Circular 
Ring (An Annular) Crack in an Infinite Body 

0 An Elliptical Crack or Net Section and a Parabolic Crack in an Infinite 
Body 

0 An External Circular Crack in a Round Bar 

0 An Internal Circular Crack in a Round Bar 

0 An Internal Circumferential Crack in a Thick-Walled Cylinder 

0 An External Circumferential Crack in a Thick-Walled Cylinder 

0 A Half-Circular Surface Crack in a Semi-Infinite Body 

0 A Quarter Circular Corner Crack in a Quarter-Infinite Body 

333 
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Method: Papkovich-Neuber Potentials 
Accuracy: Exact 

z 

References: Uflyand 1965; Sib 1968; Kassir 1973 

23.1 
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z > 0 

z < 0 

KII = KIII = 0 

Method: Integration of page 23.1 or a Limiting Case of page 24.11 
Accuracy: Exact 
Reference: Tada 1985 
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/ 

/ 
/ 

/ 

/ 

Method: Integration of page 23.1 
Accuracy: Exact 
Reference: Tada 1985 

---..... _, ......._ 
.,..,,..... y ..._ 

/ 
/ 

p on 'Z.=O, -b~X~O 

z 

. -1 
7r-Slll 

. -1 
Sill 

2E.l 
__ b-- sinh - 1 

1+(~)" 

KII = KIII = 0 

2E.l 
__ b_ 

1+(~)' 

23.3 
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P on 

z 

vf2p [ -lZ-Z) -1Z-Z2] K1(z) =--tan ---tan --
-r/h,jjj b b 

Method: Integration of page 23.1 or a Limiting Case of page 24.4 
Accuracy: Exact 
Reference: Tada 1985 
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yl2p oo r( n +i) (b)2n+2 
KI(z)=-2: -

1rVb n=O r( n +:i) z 

Method: Integration of page 23.1 
Accuracy: Exact 
Reference: Tada 1985 

KII =Kill= 0 

23.5 
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'l 

p,jb oo r(n + i) (b)2n+2 
K1(z) =- -

v'27r ~ ( n + i) r ( n + i) z 

Method: Integration of page 23.1 (or 23.5) 
Accuracy: Exact 
Reference: Tada 1985 



340 Part IV 

---..... .,.., ....- y ....._ ....._ 
/ 

/ p 

/ 

/ 
/ 

/ 

/ 
/ 

---

z 

p ( {)) Vs K1(z) =- l-as- --
3/z OS 2 + 2 

7r s z 

where 
1 

0!=-:-;-:---..,-
2(1 - v) 

Kn =Kill= 0 

Method: Integration of page 23.1 (or 23.5) 
Accuracy: Exact 
References: Tada 1985; also Kassir 1975 

p 

23.7 

s 

+ 
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t 
z 

--

crack: 0< ~/81~ IT 

KI = r==='=p=;== v1rr sin a 

where P = Total Line Load on Arc: r = const., -a :::; B :::; a 
= Constant for any r 

Method: Neuber-Papkovich Potential 
Accuracy: Exact 
References: Galin 1953; Tada 1974 

( ex<~ ) 
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r 

(Kn =Kill = 0) 

Volume of Crack: 

Crack Opening Shape: 

( 2) 8 1-v 2 2 
2v (r,O) = CY~ 

rSa 1rE 

Opening at Center: 

Additional Displacement at (O,s) due to Crack: 

4(1-v 2
) { s -!a s 2 } 

v(O,s)= CYa 1-(1-a)-tan --a---
7rE a s s2 + a2 

where 
1 

a=-,-,-,----,-
2(1 - v) 

Methods: Integral Transform, Integration of page 24.5 or 24.11, Paris' Equation (see Appendix B), 
Reciprocity (see page 24.7) 

Accuracy: Exact 
Reference: Tada 1985 

NOTE: V(O,s) Is the displacement at (O,s) when uniform pressure a is applied on crack surfaces. 

24.1 
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p 

(KII = KIII = 0) 

Volume of Crack: 

Crack Opening Shape: 

( 2) 4 1- v 1 -1 r 
2v (r,O) = 2 P- cos -

r<:,a 7r E r a 

Displacement at (O,s): 

( 2) 2 1- v 1 -1 a as 
v(O,s)= 2 P-{(1+a)tan -+a-2--2 } 

1r E s s s +a 

where 

1 
a = 72 (;-:-1---v""""'") 

Methods: Special case of page 24.3, Reciprocity (see page 24.3 or 24.7) 
Accuracy: Exact 
References: Galin 1953; Tada 1973, 1985 



344 Part IV 

Volume of Crack: 

Crack Opening at Center: 

P Va 2 -b 2 

KIA = KI ( (}) = -- . --;:-2 --,2:----
JrViffi a + b - 2abcos(} 

(K11 = KIII = 0) 

4(1-v2) 1 -1 b 
80 =2v(O,O,O)= 2 P-bcos -

7r E a 

Vertical Displacement at (0, 0, s): 

2(1-v2) ( a) 1 -1 
Vs = v(O,O,s) = 2 P 1- as -a ~tan 

7rE s ys2+b2 

where 

1 
a=-:--:-:---..,-

2 (1 - v) 

Methods: Neuber-Papkovich Potentials, Reciprocity (see pages 24.1, 24.2, 24.7) 
Accuracy: Exact 
References: Galin 1953; Tada 1985 

24.3 



24.4 Three Dimensional Cracked Configurations 345 

z. 

2P b { -1 (a+ b B +a) -1 (a+ b B- a)} KIA = K 1 (B)= . ~ tan --tan-- -tan --tan--
7ry7ra..Ja2-b2 a-b 2 a-b 2 

(K11 = Klll = 0) 

Volume of Crack: 

Crack Opening at Center: 

( 2) 8 1- v a _1 b 
80 = 2v(O,O,O) = 2 peas -

7r E a 

Vertical Displacement at (0, 0, s): 

where 

Method: Integration of page 24.3 
Accuracy: Exact 
References: Tada 1973, 1985 

a' 
2(1 - v) 
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z 

Vs 

_t (O,S) 

r 

on r= b 

(KII = KIII = 0) 

Volume of Crack: 

Crack Opening at Center: 

s(l-v2) -ib 
80 = 2v(O,O) = p cos -

1rE a 

Displacement at (O,s): 

4(1-v 2
) ( a) b _1 

Vs=v(O,s)= p l-as-a ~tan 
1rE s 2 b 2 

s + 

where 
1 

a=----,--...,.. 
2(1 - v) 

Methods: Integral Transform, Weight Function Method, Special Case of page 24.4 
Accuracy: Exact 
References: Sneddon 1946, 1951; Barenblatt 1962; Bueckner 1972; Tada 1985 

24.5 
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'Z 

2p v 2 2 K1 =- a -b 
,fiW 

(Kn =Kill = 0) 

Volume of Crack: 

Crack Opening at Center: 

8 (1-v
2

) { ~(b)2 b -1 b} 
80 = 2v (0, 0) = 1rE pa y 1- \~) - ; cos ; 

Crack Opening at r = b: 

( 2) 8 1- v b 
8b = 2v (b, 0) = pa (1 --) 

1rE a 

Methods: Integral Transform, Integration of page 24.5 
Accuracy: Exact 
References: Sneddon 1951; Barenblatt 1962; Tada 1985 



348 Part IV 

z 

(K11 = Klll = 0) 

Volume of Crack: 

8 ( 1- v 2
) { s _1 a s 2 } 

V= Pa 1-(1-a)-tan --a---
7rE a s a2 + s2 

Crack Opening Shape: 
2 2 

4(1-v 2) ( a) 1 _1 
2v(r,O) = 2 P 1- asa ~tan 

rSa 1rE S ys2+r2 

a -r 
s2 +r2 

Opening at Center: 

( 2) 4 1 - v 1 -1 a as 
80 =2v(0,0)= 2 P·-{(l+a)tan -+a-2--2} 

1r E s s a +s 

Displacement at (0, t): 

4(1-v
2

) ( a)( a){ t -1a s -1a} Vt=v(O,t)= 2 P l-as- 1-at- - 2--2 tan -+-2--2tan -
1rE as at t-s t s-t s 

where 1 
a = 72 (,..,..1---v-,-) 

Methods: Integration of page 24.5, Paris' Equation (see Appendix B) 
Accuracy: Exact 
References: Barenblatt 1962; Tada 1985 

24.7 



24.8 Three Dimensional Cracked Configurations 349 

crz(r, o )= l=> ( ~ )"f 

(l'>-2) 

(KII = KIII = 0) 

Volume of Crack: 

Crack Opening at Center: 

4(1-v 2 ) 1 r(1+t) 
80 =2v(O,O) = pa r:;;. · ( 3 ) 

E vir (r+I)r i+2 
where 

r(r) =Gamma Function (see Appendix M) 

Method: Integration of page 24.5, Paris' Equation (see Appendix B) 
Accuracy: Exact 
Reference: Tada 1974, 1985 

NOTE: For special case of 1 = 0, see page 24.1. 
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z 

K1 = ?:_p..fiW.(-1-) 
7r I+ 1 

(Kn =Kill = 0) 

Volume of Crack: 

Crack Opening at Center: 

Method: Integration of page 24.5 
Accuracy: Kn V Exact; D('-y) curve is based on accurate numerical values. 
References: Tada 1974, 1985 

NOTE: For special case of 1 = 0, see page 24.1. 

24.9 



24.10 

Method: Integration of page 24.3 
Accuracy: Exact 
Reference: Tada 1973 

Three Dimensional Cracked Configurations 351 

!Tz (r = R, 'P) = p · cos 'P 

KIIA = KniA = 0 



352 Part IV 

z. y 

\Is 

Volume of Crack: 

Crack Opening at Center: 

Vertical Displacement at (0, 0, s): 

1 
a=----,--...,.. 

2(1 - v) 

Methods: Integration of page 24.2, or V, 80 , v, Paris' Equation (see Appendix B) 
Accuracy: Exact 
References: Tada 1975, 1985 

24.11 
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Oi: (~ Y~ 0 ) = O"o f<x) 

0 X 
y 

X 

CTo { Jx f(x) . ~ja f(x) fa } 
KIA= ,fi{i va+X VX-xdx+va-X Vx-Xdx- f(x)dx 

-a X -a 

Volume of Crack: 

( 2) a 41-v 2 2 

V= E cr0 j (a -x )!(x)dx 
-a 

Crack Opening at Center: 

80 = 2v(O,O,O) = 4 ( 1 :Ev
2

) cro j f(x)£n l:ldx 

Method: Integration of page 24.11 
Accuracy: Exact 
References: Tada 1975, 1985 

-a 



354 Part IV 

z 

y 

X'1.-+Y'2.=0.'L ; p on X ~b 

~{ y'£;-- ~}2 
y7ra 

KIA= 

(=ka{vla+X-vX-b} 2 ) X>b 

ka{2a- (V£;- -~)2} 

(= ka{2a-(va-X-vb-X)2
}) X<b 

Volume of Crack: 

4(1-v 2 ) 

V = 3E pl (3a- L) 

Crack Opening at Center: 

4( 1 - v 2
) { a } 

80 = 2v (0, 0, 0) = 1rE p L - b t'n fbT 

Vertical Displacement at (0, 0, s): 

2 (1 - v 2
) ( {)) { t'a 1} v0 =v(O,O,s)= p l-as- bt'n-+L-L 

1rE as eb 

where 

Method: Integration of page 24.11 
Accuracy: Exact 
Reference: Tada 1985 

1 
a = -=-2 (;-:-1---v-:-) 

24.13 

y 

(L=-a"'"b) 
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z 

4 
KIA = 37!" p V1W cos(} 

KII = KIII = 0 

Method: Integral Transform (Hankel Transform) or Integration of page 24.9 or 24.11 
Accuracy: Exact 
Reference: Benthem 1972 



356 Part IV 

z. 

y 

-p 

Volume of Crack: 

Crack Opening along Diameter x = 0: 

Vertical Displacement at (0, 0, s): 

Method: Integration of page 24.11 
Accuracy: Exact 
Reference: Tada 1985 

-x 

4 X 
KIA = - p ..fiW. · -

37r a 

V=O 

8 = 2v (O,y, 0) = 0 

Vs = v(O,O,s) = 0 

NOTE: Crack surface interference (x < 0) was not considered. 

24.14a 

X 
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z 

Volume of Crack: 

2(1-v2) 3[ 16(1-v2) 3 (3)] 
V = E pa = 3E pa . S 

Crack Opening at Center: 

( 2) [ ( 2) l 2 1-v 8 1-v 1 
80 = 2v(O,O,O) = pa = pa · (-) 

1rE 1rE 4 

Displacement at (0, 0, s): 

1-v
2 

{ 8 2 
( a

2
) 8 2

} Vs=v(O,O,s)=--pa 1-(1-2a) 2 t'n 1+--r -2a-2--2 
1rE a s s +a 

where 

Method: Integration of page 24.11 
Accuracy: Exact 
Reference: Tada 1975, 1985 

1 
a=----,--...,... 

2 (1 - v) 



358 Part IV 

Volume of Crack: 

'Z. 

0 
y 

" (Roof-shaped distribution) 

X 

2 {s 4(x)%( ~ !X)} KIA= 7rPFa 6-3 a vI +a-- Va 

or = ~PFa H- ~ (cos 0)312 (vi +cos B- y'C()S"B)} 

Crack Opening at Center: 

( 2) [ ( 2) l 6 1-v 8 1-v 3 
80 =2v(O,O,O) = pa = pa · (-) 

1rE 1rE 4 

Displacement at (0, 0, s): 

V8 =v(O,O,s)=--pa 3-4(1-a)-tan --(1-2a)-£n 1+- -2a--1 -v 2 
{ s _1 a 8 2 

( a 2
) 8 2 

} 
7rE a s a 2 s 2 s 2 +a 2 

where 

1 
a=.,......,..,-....,. 

2 (1 - v) 

Method: Superposition of pages 24.1 and 24.15. 
Accuracy: Exact 
References: Tada 1975, 1985 

24.16 



24.17 Three Dimensional Cracked Configurations 359 

z C)z(x, y,o) 

=p( 1- ~+:') 

Ku ~~py'iia { (t + J,)-2f [ c;;l)'h R+ c ~~)" Jt +I ;I] } 
= ~ P Fa { ( 1 + )2) -2~ [( 1 cos e 1 )% J1 + 1 cos e 1 + ( 1 sine 1 )% J1 + 1 sine 1] } 

Volume of Crack: 

16 1 - 1/ 3 3 16 1- 1/ 3 ( 2) [ ( 2) l 
V = 3E pa · ( 1 - S v'2) = 3E pa · ( .4697) 

Crack Opening at Center: 

( 2) [ ( 2) l 8 1-v y'2 8 1-v 
80 = pa· (1--) = pa· (.6464) 

~E 4 ~E 

Displacement at (0, 0, s): 

Vs = v(O,O,s) 

= 1 - v2 pa{ (4- v2) - 4(1- a) _:tan -l ~ + v'2(1- 2a) 8:Cn (1 +a:) - 2(2- v2)ah} 
~E a s a s s +a 

where 

Method: Superposition of page 24.16 
Accuracy: Exact 
Reference: Tada 1985 

1 
a = 72 (;-:-1---v""') 

NOTE: Because of symmetry, it is only necessary to calculate KIA for 0 <::: (} <::: 7rf4· 
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P on X=o, 'Z.=. ± s 

Maximum Value of K1 : 

v'2 p ( {)) { 1 ( -I ..;2aS -I ..;2aS) v'2 -I a} (K1 ) =KIA=-- l-as- - tanh --+tan -- --tan -
max (1r)3/z os Vs s+a s-a y'a s 

Volume of Crack: 

s(l-v 2
) 2 {[ s2

] -Ia s} V = p a 1 + ( 1 - 2a)- tan - - ( 1 - 2 a)-
1rE a 2 s a 

where 

Method: Integration of page 24.11 
Accuracy: Exact 
Reference: Tada 1985 

1 
a = -=-2 -:-:-( 1---v-:-) 

24.18 



24.19 

Volume of Crack: 

'Z 
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y P on X=X0~ 'Z= 0 

L=xox--+---~--~+-~-r-x 

! 1 =a+X 
t'l.. =-a-X 

p (1 -a) { fi• -I fi• j¥2 h-1 j¥2 h-1 a } KIA= -tan -+ -tan --tan -
1ry'1r{i L L L L x 0 

(K11 = Klll = 0) 

4(1-v2
)_ 2{xo [(x0) 2 ] -Ia} 

V= 1rE p(1-a)a -;- -; -1 tanh Xo 

Crack Opening at Center: ( 2 ) 

8 1- v (p(1 -a) 1 ) (x 0 ) 80 =2v(0,0,0)= ·- a·D-
1rE 21r x 0 a 

where 
1 

a = 72 -;-:( 1---v....,.) 

"lT'L 
"T =1.2337 

-t----.H \.2 

Method: Integration of page 24.11 
Accuracy: Kw V Exact; D(Xofa) curve is based on accurate numerical values. 
Reference: Tada 1985 



362 Part IV 

Volume of Crack: 

2 

L1 = Xo+X 
L2.= X0 -X 

R., = o.+X 
.t2. = a.-X 

P on X=± J'o , Z = 0 

_p(1- a) {(If' h-1 If' lf2 h-I /f2) KIA- -tan -+ -tan -
1r,f/Ui L, L, L2 L2 

+ -tan -+ -tan - -2tanh -(lf2 -1 !f2 If' -1 If' ) -1 a } 
L, L, L2 L2 xo 

(K11 = Klll = 0) 

s(1-v 2
)_ 2 {x 0 [(x0 ) 2 ] -Ia} 

V = 1rE p(1 - a)a ~- ~ -1 tanh Xo 

Crack Opening at Center: 

80 = 2v(O, 0, 0) = 8 ( 1 - v2
) (P(1 -a).__!_) a. n(xo) 

1rE 1r x 0 a 

where 
1 

a = -=-2 (;-:-1---v-:-) 

Method: Superposition of page 24.19 
Accuracy: Kw V Exact; D(Xofa) curve is based on accurate numerical values. 
Reference: Tada 1985 

NOTE: For numerical values of D(Xo/a), see page 24.19. 

24.20 

X 
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r 

KIA= 0 

4 
KIIA = ( ) (qcosw)..jir{i Jr2-v 

4(1 - v) . 
KHIA = 1r(2 -v) (qsmw)..jir{i 

Method: Three-Dimensional Potential Functions or a Special Case of Elliptical Crack (page 26.3) 
Accuracy: Exact 
References: Segedin 1950; Sib 1968 
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KIA = ~ ( asin2 1) ..j1W 

4 . 
KuA = 1r(l _ v) (a sm 1 cos 1) cos w..jmi 

4(1 - v) 
KmA = 1r( 2 _ v) (a sin 1 cos 1) sin w..jmi 

Method: Superposition of pages 24.1 and 24.21 or Special Case of Elliptical Crack (page 26.2) 
Accuracy: Exact 
References (for Elliptical Crack): Sadowski 1949; Green 1950; Irwin 1962b; Sib 1968 

24.22 



24.23 

r=a 

Three Dimensional Cracked Configurations 365 

z. 

(_) 

4 
KIII = - q,f/W, 

3Jr 

9 

Method: Integral Transform (Hankel Transform) or from Stress Concentration Factor 
Accuracy: Exact 
References: Neuber 1937; Weinstein 1952; Collins 1962; Benthem 1972 



366 Part IV 24.24 

z y 

X )( 

l = a 2 
- 2ab cos 0 + b 2 

Q 1 { 2 1 [ 2 2 (1+B 2 )cos0-2B]} 
KIIA=--3-· · B+--·---z {1+(1-v)B }(cos0-B)+v(1-B) 2 

('rra) 12 ~ 2-v L L 

KIIIA = _ ____3g__ ~.sinO {1- v- v1 -B2} 
3; 2- v L 2 L 2 (7ra) 2 

(See page 24.25) 

2Q 1 +v 
KIIA =--·--cosO 

(1ra) 3/2 2-v 

2Q 1- 2v . 
KIIIA = --- · --smO 

(1ra) 3/2 2-v 

Method: Fourier Series Expansions 
Accuracy: Exact 
References: Kassir 1975; Tada 1985 

NOTE: A minor error in Kill (Kassir 1975) was corrected. 

y 
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'Z. 
y 

£' = a 2 
- 2ab cos 0 + b 2 

B= b/a 

L = £/a ( L 2 = 1 - 2B cos 0 + B 2 ) 

2R 1 1 1 { 2 2 (1+B 2 )cos0-2B} 
KIIIA = --3- ·-- · · 2 (1 -v+B ) (cosO -B) -v(1 -B ) 2 

(7ra) /2 2- v -11=1? L L 

(See page 24.24) 

2R 1+v. 
KIIA =---·--smO 

(7ra) 3/2 2- v 

2R 1- 2v 
KIIIA =--·--cos 0 

(7ra) 3/2 2- v 

Method: Fourier Series Expansions 
Accuracy: Exact 
References: Kassir 1975; Tada 1985 

NOTE: The series form solutions in Kassir (1975) were converted into closed-form expressions. 

y 

.)( 



368 Part IV 24.26 

z 

-F(C,R.,'P) 

y 

X 

See pages 24.3, 24.24, and 24.25. 



25.1 

z 
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---r--
b' 

I 
tP 

P { -la aVb 2 -a 2 
} KIA = --3- cos - + ----;;-2 ---,2;-----

('rra) 12 b a + b - 2ab cos() 

Method: Neuber-Papkovich potential 
Accuracy: Exact 
References: Galin 1953; Tada 1973 

KIIA = KniA = 0 



370 Part IV 

'Z 

2pb [ -1 a a { -1 (b +a B +a) -1 (b +a B- a)}] KIA - -- a cos - + tan --tan-- -tan --tan--
- ('rra) 3/2 b y' b 2 _ a 2 b - a 2 b - a 2 

Method: Integration of page 25.1 
Accuracy: Exact 
Reference: Tada 1973 

KIIA = KniA = 0 

25.2 
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z 

........_ 

KII = KIII = 0 

Methods: Boussinesq-Papkovich Potential or Special Case of page 25.2 
Accuracy: Exact 
References: Bueckner 1972; Tada 1973 

'\. 
'\ 

\ 

' \ 



372 Part IV 

z 

Tv (X) 

Relative Displacement at Infinity: 

4(1-vz)_b -!a 
2V: = p . -cos -

00 E a b 

Method: Paris' Equation (see Appendix B) 
Accuracy: Exact 
Reference: Tada 1985 

25.3a 



25.4 

Method: Integration of page 25.3 
Accuracy: Exact 
Reference: Tada 1973 

Three Dimensional Cracked Configurations 373 

z 
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Tv00 

Relative Displacement at Infinity: 

Method: Integration of page 25.3 or Paris' Equation (see Appendix B) 
Accuracy: Exact 
Reference: Tada 1985 

25.4a 
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'Z 

p 

p 

p [ {)] s 
{}"z (r,z = 0) =- 1- as- 31 

NoCrack 27r OS ( 2 2) 2 r +s 

P [ -1 s as { 2a 2 
}] K1 =--3-'1 tan -+-2 --2 1-a-2 --2 

( 1ra) 2 a a + s a + s 

where 

1 
a = ::-2 (;-:-1---v""""'") 

Method: Integration of page 25.3 
Accuracy: Exact 
Reference: Tada 1973 
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~(X) 
z 

p 

(o .. s) 

t"=a. 
(01-S) 

p 

Tvoo 

_ P ( a) { -1 s as } KI ---3-., l-as-a tan a+"""'22 
('rra) 12 s a +s 

or p { -1 s s/a s/a } 
= (7ra)3h tan a+ l+(s/a)2 a [1+(s/a)2r 

Relative Displacement at Infinity: 

where 

1 
a=.,....,..,---,-

2(1 - v) 

Method: Reciprocity (see page 25.6a) or Paris' Equation (see Appendix B) 
Accuracy: Exact 
Reference: Tada 1985 

25.5a 

2V«J 
___ _L 

r --T 
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r 

KII = KIII = 0 

Methods: Stress Concentration Factor (Neuber), Solution for a Stamp Problem (e.g., Sneddon), Special 
Case of Elliptical Net Ligament (page 26.4) or Special Case of page 25.5 

Accuracy: Exact 
References: Neuber 1937; Sneddon 1951 
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Crack Opening Profile: 

V(~s) 

T 1-oo 
v«> t P 

2V(~ 0) 

( 2) 2 1- v p -1 a 
2v (r, 0) = cos -

r2a 1rE a r 

Vertical Displacement at (O,s): 

v(O,s)=--- tan --a-..!,__-:;-
1 - v 2 P { -1 s s/a } 

7rE a a 1 + (s/a)2 

Relative Displacement at Infinity: 

( ) 
1-v 2 P 

2V00 = {2v(r,O)} = {2v(O,s)} =---
r---+oo S---+00 E a 

where 
1 

a = -=-2 (;-:-1---v-:-) 

Method: Paris' Equation (see Appendix B) 
Accuracy: Exact 
Reference: Tada 1985 

__ l 
2.V. ... -_fa:~ 

25.6a 
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_3 M () 
KIA - -2 2 . /:;;;; cos 

a y7ra 

( o-o = 4i\f) 
1W 

Methods: Stress Concentration Factor (Neuber), Solution for a Stamp Problem (e.g., Sneddon) 
Accuracy: Exact 
References: Neuber 1937; Sneddon 1951 
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Relative Rotation at Infinity: 

KIA in terms of¢: 

co 

z. 

-oo 

3 M 
KIA = --2--cos B 

2a Fa 

KIA= ( 2 ) qy..j{i cosO 
,fir 1 - v 

E 

Method: Paris' Equation (see Appendix B) 
Accuracy: Exact 
Reference: Tada 1985 

NOTE: Crack surface interference (7r/2 < (} < 37r/2) was not considered. 

25.7a 



25.8 

I T y 

3 T 
KIII =--2--

4a Fa 
3 

=-ToFa 
8 
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Methods: Stress Concentration Factor (Neuber), Solution for a Stamp Problem (e.g., Sneddon) 
Accuracy: Exact 
References: Neuber 1937; Sneddon 1951 
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t t t t t a' 

where 

[ QFb (~)]c = 4v; = .573 V 1 -~ a ----+! 7r 
a 

Method: Singular Integral Equation 
Accuracy: Better than 0.5% (formulas are based on Erdogan's numerical results) 
References: Erdogan 1982; Tada 1985 

25.9 
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-a-

KIA = (]" Q cos(} . FA ( ~) 
(r=a,O) V "2 

where 

(c) 0 [ ( c)1/4 (c)5/2 ( c)3/2] Fs -;; = y 1 --;; .573 + .427 1 --;; - .26 -;; 1 --;; 

[FA(~)] c = 4y'2 = .6002 
a - --+1 3Jr 

a 

[Fs(~)l 4y'2 R =-2 =.573 
1-:: 7r 

a .:--+1 
a 

Method: Singular Integral Equation 
Accuracy: Better than 0.5% (formulas are based on Erdogan's numerical results) 
References: Erdogan 1982; Tada 1985 



384 Part IV 

Notes on Solutions for Elliptical Crack Problems 

See pages 26.2, 26.3, and 26.4 (Internal 
Cracks), and page 26.5 (External Crack). 

1. The angle () is the parametric angle 
representing Point A on the crack front. 
That is, the coordinates of Point A are 
[a cos(), b sin(), (0)], as shown in Fig. 
1. 

2. Note that 

is the length of the normal at Point A, as 
shown in Fig. 2. 1, 

2 2 2 14 

3. A term (sin ()+~cos e) repeatedly 
appears in the s~lution. By replacing 
this term with Jllb, solutions may be 
expressed more concisely. For exam
ple, 

for page 26.2 and 

p 
KIA=--

2aV7ff 

for page 26.5. 
4. The numerical values of the complete 

elliptic integrals of the first kind, K(k), 
and the second kind, E(k), are tabulated 
in Appendix L. Accurate empirical 
formulas for the second complete ellip
tic integral, E(k), are also given in 
Appendix L. 

26.1 

y 

Fig. 1 

Fig. 2 
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t t (J 1 
z y 

aM . 2 b 2 a,;;£ { 2 }lf4 
KIA= E(k) sm B+ i cos () = E(k) 

"/2 
E(k) = 1 V 1 - k2 sin2 'P dcp 

_ _ 7r _aM 
K1,ma:x - K1 (B- ± h) - E(k) 

Method: Integral Transform (Three-Dimensional Potential Functions) 
Accuracy: Exact 
References: Sadowsky 1949; Green 1950; Irwin 1962b 

a2:.b 



386 Part IV 

Y' 

l Q. "2. b 

( 2 ) 1/4 

a sin "! M { . 2 (b) 2 2 } 
KIA= E(k) sm (}+ -;; cos (} 

(asin"jCOS"f)Mk2 {k' 1 . . } K1IA =- 1 -coswcos{}+-Csmwsm(} 

{ 
2 } /4 B 

sin2 (}+ (~) cos2 (} 

(asin"jCOS"f)M(l-v)k2 {1 . (} k' . (}} 
KlllA = 1 -coswsm - -smwcos 

2 /4 B C 
{ sin2 (} + (~) cos2 (}} 

B = (k2 
- v )E(k) + vk 12 K(k) 

C = k + vk E(k) - vk K(k) ( 2 12) 12 

2 12 I 
k = 1- k , k = b/a 

7r/2 d 1f/2 ~---

K(k) = 1 'P , E(k) = 1 V 1 - k2 sin2 cp dcp 
0 V 1 - k2 sin2 cp o 

Methods: Three-Dimensional Potential Functions or Superposition of pages 26.2 and 26.4 
Accuracy: Exact 
References: Kassir 1966; Sih 1968 

26.3 
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z 

qM. k2 {k' 1 } KIIA = 1 -coswcosB+-sinwsinB 
2 /4 B C 

{ sin2 (} + (~) col (}} 

q,fiJj · (1 - v)k2 { 1 . k' . } 
KIIIA =- I -coswsmB- csmwcosB 

{ 
2 } /4 B 

sin2 (} + (~) col(} 

B = k - v E(k) + vk K(k) ( 2 ) 12 

C = k + vk E(k) - vk K(k) ( 2 12) 12 

2 12 I 
k =1-k ,k =b/a 

'lr!z 'lr!z 
K(k) = 1 dr.p , E(k) = 1

0 
V 1 - k2 sin2 r.p dr.p 

0 V 1 - k2 sin2 r.p 

Method: Three-Dimensional Potential Functions 
Accuracy: Exact 
References: Kassir 1966; Sih 1968 



388 Part IV 

KIIA = KniA = 0 

p 
KI(a=b) =--

2aVJffi 

Method: Fourier Transform (Three-Dimensional Potential Functions) 
Accuracy: Exact 
References: Green 1950; Westmann 1966 

26.5 



26.6 

t 

Three-Dimensional Cracked Configurations 389 

t 

X 
( Cra.ck: )'"< 2 ax) 

' ~0"· ~ 

( 2 2)1/4 
KIA = uy'Ir a +yo 

Method: Neuber-Papkovich Potential (or a Special Case of page 26.2) 
Accuracy: Exact 
Reference: Shah 1968 



390 Part IV 

p 
onet = 1Ta2 

KI = ~et ../lrO. F, (alb) 

= Clnet bt<b-a) Fa (a./b) 

= CSnet /-rrb F3 (<l/b) 

G (0/b) = Ft ca/b) = F2 (Cl/b) = ~(a/b) 
./t-a/o ,fo./o j't;Ct-%> 

G(o/b .... O) = 1/2. 
G(C.Vb,...,) = f.t22 

G ( 0/b) = y { I 1- t ~ T : ( t >'~ 
-o.3E.3(tl-to.73t(%)..,j 

K'J[' = t<JI[' - 0 

f.J22 

~8 ~B 

00~--~--~--~----~--~--~--~----~--~--~ o. 2 o.4 o.6 o.s t. o 
-alb 

Method: Singular Integral Equation (Bueckner), Asymptotic Approximation (Benthem) 
Accuracy: Better than 1% 
Referencees: Bueckner 1965, 1972; Benthem 1972 
Other References: Lubahn 1959; Wundt 1959; Irwin 1961; Paris 1965; Zahn 1965; Harris 1967 

27.1 



27.1a 

v 

~p 

K1 = (]',fie F(Cfh) 

Three Dimensional Cracked Configurations 391 

16 = 6. tlo c.ro..ck 

I + 6 c.ro.ck 

I 
-,{;m 

F(Cfb) = (l _~~b)% { 1.122 _ 1.302 ~ + .988 G r _ .308 G) 3 } 

Volume of Crack: 

Additional Displacement at Infinity due to Crack: 

Crack Opening at Edge: 



392 Part IV 27.1b 

where 

G(CJb)=~- 1 2 {.375+.383(1-~)+.5(1-~) 3 } 
3 (1- %) b b 

2 
H(CJb) = (%) G(CJb) 

D(%)= 1 2{1.454-2.49~+1.155Gf} 
(1-%) 

Methods: K1 , 8 Integral Transform (cjb :::; 0.6), Interpolation (cjb > 0.6); V, b. Paris' Equation (see 
Appendix B) 

Accuracy: K1 , 8 1 %; V, b. 2% 
References: Erdogan 1982; Tada 1985 

NOTE: !:lcrack is the elongation at infinity when uniform pressure a is applied on crack surfaces. 
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Ch = 4M 
N lt'a. a 

K1A = ON [iTO. F, ( Olb > 

= ON~ rrcb-a) fz.(Gl/b) 

- o-N~ rrb f3 (<l/b) 

G(o/b )= Fa (alb)= fi(4/b) = F3 (ll/b) 

,.ft-% Jo..;'(; J~'h(t-%) 

G. ( o/b ...... 0) = 3/8 

G(o/b-1)= 1.122 

G (o/b) = ~ { 1 + i ~ -t; (t) + 1~ (%-) 
3S"((l )'t (a.~} 

Kx = Kn == 0 + 12'8 1)" + O.S37 bJ 

1.122 

COl 
U:. O.Gt-----+-----+----~~--+----+-----1 0.6 .. 

0 ~--~--~--~--~---L--~--~--~--~~~ 
0 0.2. 

Method: Asymptotic Approximation 
Accuracy: Better than 1% 
Reference: Benthem 1972 

0.4 0.6 o.a \.0 

- a/b 



394 Part IV 27.2a 

cJ> ) 
Cnicf< 

4M 
a=-

b3 

KIA= avu F(CJb); K1s =KIA cosO 

Additional Rotation at Infinity or Kink at Cracked Section due to Crack: 

s(1-v2) 2{ 2 .258-.164:,} 
rPcrack= a1r(.:_) 1-1.244:_+2.11(:_) + 3 b 

E b b b (1 _ CJb) 

Crack Opening at Edge: 

Methods: K1 , 8 Integral Transform (c/b ::; 0.6), Interpolation (c/b > 0.6); ¢ Paris' Equation (see 
Appendix B) 

Accuracy: K1 , 8 1 %; ¢ 2% 
References: Erdogan 1982; Tada 1985 

NOTE: Crack surface interference on compressive side is not considered. 
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2T 
LN = 1f(l3 

km: = C:N.{iO. ft(O/b) 

= "tN lrrct>-a) Fz. <O./b) 

=- 't.N ..fib F3 ( Cl./ b ) 

G<O/b)= FiCa,lb) = F2<c¥b) = FaCa/b) 

../t-0/b ../o./b j%(\- %) 

&(o/b-..o)= '3/8 

G(%-.t) = 1 

Gr(o/b)· i ft-+tt .. i-(~)2 -t,~<:r Tw,___ __ _ 

l<x: = t<n = o 

o.B 

~ 
... 

If 0.6 

u: 
~ 

t 
o.lt· 

0 0.2. 

Method: Asymptotic Approximation 
Accuracy: Better than 1% 
Reference: Benthem 1972 

35" a,"t- Q.>'} + l2,{i)·) + 0.'2.08("b 

o.4 o.& 0.8 1-0 

- alb 

1-0 



396 Part IV 

p 
O:net= iT C.b "=-a,.) 

KI = at\et..frrO. F1 {4/b) 

= Cinet4rrcb-o..) fa<a/b) 

= <lnetJrrb Fa(tA/b) 

G(O../b)=- F,C4/b) = fa<cVt») ... fi(c¥b) 

J t- o/b ./ o.f b ./%(t-%) 
G ( o/b...,.O) = 2/Tr 

G ( o/b""'') = 2./.flr"-'t 
G(o/b)= ;r 1+!-%-- ;tt)+O.lt-21(-i-J) lp 

kx == K:m: = 0 
..!..,_ 
.fiFli 

=o.l26 
o.s t-----+----+-----+-----+--=,.......,~-IO.S 

~ 
~ 0.6 
~ 
" 

tr 
<.!' 

i 
0.4 

0.2 

0.'2 

Method: Asymptotic Approximation 
Accuracy: Better than 1% 
Reference: Benthem 1972 

o.4 o.G 
- 0./b 

NOTE: For an alternate solution and displacements, see page 27.4a. 

o.& 

0.4-

f.O 

27.4 



27.4a 

I .. t~ 
t~:J 

2.b 
I 
I 

tP 

v 

p 
(]"=-

7rb2 

Three Dimensional Cracked Configurations 397 

1 ba = 6. ho cna.cJ< 

1- 6 ero.ek 

s 

!hr 

KI =~(]"V1W ·FG) 

Volume of Crack: 

Gm ~ (";.)' [L260fn c ~~) -1260~- 63oGJ' uom' -315m' -102m' 

+.063Gr -.0093G) 7 -.oos1 Gr] 
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Additional Elongation at Infinity due to Crack: 

!1crack = V / ( 1rb2
) 

Crack Opening at Center: 

8= s(1-v2) O'a·H(~) 
1rE b 

( a) 1 ( 1 ) [ 1 a (a) 3.5] 
H b = %fin 1 _ % 1 - lb + .340 b 

Method: K1 , 8 Integral Transform; V, ~Paris' Equation (see Appendix B) 
Accuracy: K1 , 8 0.5%; V, ~ 1% 
References: Erdogan 1982; Tada 1985 

NOTE: !lcrack is elongation at infinity when uniform pressure u is applied on crack surfaces. 

27.4b 



27.5 

If 

Three Dimensional Cracked Configurations 399 

4Mo. 
erN = 1r C b4-a'+) 

KIA== cr-N~F,(o./b) 

= CJN~ir(b-0.) fi_ (0/b) 

= CJN ./-rrb F3 (a/b) 

G(a/b)=- Ft(Oit>)_ F2(o./1>) = F3 (tt/b) 

./1- 4/b ./aft> )%(~-%) 
G < %..,. o) = 4j@1T) 
G (%- t) = 2/./rr:'L-'t 

G (%)=3~{ 1+:!-~+= (~)+ 1!(:~ ~ 
v v -,;~(t)\o.4-J3(:l} 

2. 

./rr!.'+ 
l'\.1[' = f\J!I' = 0 = o. 32b 

0.81-----+-----+------1----___:1----~0.8 

"' 0.6 o., 
1'1 u.. 

u: 
<.!} 

0.4 0.4 

f 
0.2 0·2 

0~-~-~-~-~-~-~--~---L--~~ 
0 0.2 o.4 o.& o.s \.0 

- a/t:> 

Method: Asymptotic Approximation 
Accuracy: Better than 1% 
Reference: Benthem 1972 
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Additional Rotation at Infinity or Kink at Cracked Section due to Crack: 

-~ 
~ 

2 1280(1 - 1/ ) 4 1 
rPcrack = 91rE CY(a/b) Cn 1 _ a;b ·if>( a/b) 

..---r---, \.'2. 
1·111 

lei 0.'8 1------1----""""-----+-----+-----fl 

t 

Methods: K1 Asymptotic Interpolation; ¢Paris' Equation (see Appendix B) 
Accuracy: K1 1 %; ¢ 2% 
References: Benthem 1972; Tada 1985 

NOTE: Crack surface interference on compressive side is not considered. 

27.5a 
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2Ta. ~ __ ...;,._ __ 
N lr( h"'-a ... ) 

I<.Jr = 't N rrro. Ft ( 0./b) 

=-r:N~tr(b-4) fa(Cl/b) 

=TN ..{Trb Fs (Q./b) 

GCo/b)= t=1Ca/b)= FiCo/b)= FJ(O./b) 

-/1- Of'b ../ 0./tJ J%( t- %> 
GC~- O) = 4!(31l') 

G(o/b-+1) = 2/1T 

G <%> = 3~[ t+t%--+t<~:L+ ~ctf 
-att t )"' "+' o. o'38 ( b ~s} 

kx = Kx = 0 

0,8 t------t------t----+-----+------1 0.8 

tr 0." . 
~ .. 
Li: .. 
~ 0.4 

1 

0·2 

Method: Asymptotic Approximation 
Accuracy: Better than 1% 
Reference: Benthem 1972 

o.4 o.& 0·8 f.O 

- alb 
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t t t 
tp CT 

• t t 
p 

u= 
1r(r~- rf) 

c a) K1=u..fiW.·F -,-
r0 t 

I 

l 
• ~ + 'p II+ 

o-

-'$:. . 
~ ........ 
~-

"' L1-

~ 1 
'If 

t 

Method: Integral Transform-Singular Integral Equation (aft:::; 0.6), Interpolation (aft> 0.6) 
Accuracy: Solid curves (0.1:::; rifr0 :::; 0.9,a/t:::; 0.6) are based on values with better than 1%accuracy; 

2% for aft> 0.6 
References: Erdogan 1982; Tada 1985 

NOTE: For rifr0 = 0 (solid cylinders), see page 27.4, and for rifr0 --> 1, see page 2.10. 
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Crack Opening at Edge: 

5 I 
I I I I I I 

I 
,- I -

-~ 4 "' ~ ... 
/ 
I 

I 
~ 
113 
"'-J 

1- I -
I 

0 I 
l 

2 

t l.ltS't 

/n_, 
h t, 

1- I -t=·q -
I 

/ 
vo 

/ 
/, t:--v ·' 

~-~ 
_ . .., 

-,, 
-......: .5 

............... :::::::::::== •'+ 
·3 -- •2. - - -- _:L __ -----= - ----I"; 0 

I I 
Fo -I 

I I 

2 
'if 

0 
0 0.'2 OA 0.6 o.S 1.0 

-0./t 

Method: Integral Transform-Integral Equations 
Accuracy: Curves are based on values with better than 1% accuracy. 
References: Erdogan 1982; Tada 1985 
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-0"' 

I 
2.0 I I /' -

- /'ri I - / l"o-
-

/I 
1·5 

/ - / 
- / 

/ 
r; = o.'f - _..," =---- -----_!!.--

1·0 

- 0·~ 

~ ::::.... o.'J 
::::.___ -
::::.__ 0·" 

o.s -- O·'t 0·:> -
o.3 -
o.'2. 

r- O· I ------- ... 
0 _,---, 'F."'~ 

0 0.2. 

I 

--- .... 

---
--------------
!"' 

I 

KIA = a..jiWF ....!.. , -( r· a) 
ro t 

KIB = KIA cos(} 

I 
-
-
-
-

-
-
-
-

........... 

''\. ,-
r-, ~ 

' ,--- ·~ ------1----= --------""' =--= ----= ---

--
-$ 
0 
C!ol 

-(: L 

1oi:A-

o.'i j.O 
~) 

Methods: Integral Transform-Integral Equations (aft:::; 0.6), Interpolation (aft> 0.6). 

27.8 

Accuracy: Solid curves (0.1 :::; rifr0 < 0.9; aft:::; 0.6) are based on values with better than 1% accuracy; 
2% for aft > 0.6. 

References: Erdogan 1982; Tada 1985. 

NOTE: Crack surface interference on compression side is not considered. For rifr0 = 0 (solid cylinder), see page 27.5; for 
rifr0 --> I, see page 2.10. 
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-(j 

Three Dimensional Cracked Configurations 405 

Crack Opening at Edge: 

I 
s~~~~~~~~~~~~~~~--~~~--

' I - ,' ~ 
~ I 

~ 4r------+-------r---,~+-------~----~ 

$. I 
- I Q /!1,., 

-i~ 3r---------r---------~~'-1--~----~--------~------~ 
. ---
~-~ ~] 
~ Zr-------~--~---r~~---1--------+-------~ 

I 

t 

00~--~~~~--~~_. __ _. __ ~--~--~--~ 
o.2 oA o.fl o.s 1.0 

-a/t 

Method: Integral Transform - Integral Equations 
Accuracy: Curves are based on values with better than 1% accuracy. 
References: Erdogan 1982; Tada 1985 

NOTE: Crack surface interference on compressive side is not considered. 
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p 

.o I 

I I / I I 

r- It -
;....I.-I ro 

0 .ca 
/ 

/ 
r- / r· q 

-
/ 

/ ~ ----- ............. 
. 6 / 

~ o.s " 1--- - -- \ - 0·'1 ~- \-......... ------~ 0.6 
A· r- . 

O·S ----~-://J 
~ o.'t ----- / r- o.3 --- ,_.,/ 1-

1.--- / / 

o.2. -- / 
2. ~---- / _, 

..... 
o. f '-"'--

-

0 I I I I I 

0 0.'2. 0.'1- 0. 6 o.<o 1.0 
-a/t 

Methods: Integral Transform- Integral Equations (aft:::; 0.6), Interpolation (aft> 0.6) 
Accuracy: Solid curves (0.1 :::; rjro :::; 0.9; aft:::; 0.6) are based on values with better than 1% accuracy; 

2% for aft> 0.6. 
References: Erdogan 1982; Tada 1985 

NOTE: For rjr" = 0 (solid cylinder), see page 27.1; for rjr" --> 1, see page 2.10. 
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( 
p 

I 

I 
I 

I 
Crack Opening at Edge: 

I 

I 
I 

I 
~p 

3 

/ 

t 
·2 

·1 ---
0 f.= o ·ll'l't = L 
~--~--_.~~~--~--_.----~--~--_.----~--~ sv 
0 0.'2. 0.4 O.G o.CS 1·0 

__.,.aft 

Method: Integral Transform - Integral Equations 
Accuracy: Curves are based on values with better than 1% accuracy. 
References: Erdogan 1982; Tada 1985 
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I 
' 

~ 
M 

I. 0 I I 

1-

0. 8 

n .... ,/ 
1- t"o / 

/ 

6 
/ 

/' I 

I 
I 

I 

---1-----

(r; a) KIA = CY,fiWF -,
ro t 

KIB = KIA cos(} 

I 

-

-

·' 

~ 
~ -, r---/ 

' - '\ 

4 

~~ 
0 

~~ 
.'2 

= 

0 
0 

o.'il 

0·'1 

o.€. 

a.5 

o.4 

o.3 
0.2 

0./ 

0.2 

-----....... \-
........ \ 

' -------- -----
---:; - ~--------~--::~ -- ------- - ,-/I ------1-- --

/ / 

-~---
/ -

-/ ,- I 
O.'t o.G o.s 1.0 

--- 0./t 

Methods: Integral Transform- Integral Equations (a/t::; 0.6), Interpolation (a/t > 0.6) 

27.10 

Accuracy: Solid curves (0.1 ::; rjr" ::; 0.9; ajt::; 0.6) are based on values with better than 1% accuracy; 
2% for ajt > 0.6. 

References: Erdogan 1982; Tada 1985 

NOTE: Crack surface interference on compression side is not considered. For rjr" = 0 (solid cylinder), see page 27.2; for 
r)r, ---t 1, see page 2.10. 
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Crack Opening at Edge: 

I 

I 
I 

0 
M 

1.5 .--.--r---r---r---r----,r----,--,--,r----,r-----. 
1·4-54-

f 

0 
0 0.2 0.4 0.6 

--..0./t 

Method: Integral Transform - Integral Equations 
Accuracy: Curves are based on values with better than 1% accuracy. 
References: Erdogan 1982; Tada 1985 

NOTE: Crack surface interference on compressive side is not considered. 

o.ca ).0 
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X 

Semi-infinite body (y 2: 0) (y = 0: Free surface) 

2 
KIA = -a..fiW, F(O) 

7r 

F(B) = 1.211- .186~ (10o < () < 170°) 

Methods: Alternating Method (Smith, Hartranft), Finite Element Method (Tracey, Raju); F (B) is based 
on Smith's result (Merkle) 

Accuracy: 2% 
References: Smith 1967; Hartranft 1973; Tracey 1973; Merkle 1973; Raju 1979 



28.2 

(See page 24.16) 

Three Dimensional Cracked Configurations 411 

-X 

Semi-infinite body (y ~ 0) (y = 0: Free surface) 

2 
KIA= -CYVM · F(B) 

7r 

F(B) = 1.031- .186~- .54 sinO 

2 
G(B) = 1.17- .31 sin()+ .23(sin B) 

(10"< () < 170") 

Methods: Approximations (F(B), Merkle; G (B), Tada) ofNumerical Results by Alternating Method (Smith) 
Accuracy: 3% 
References: Smith 1967; Merkle 1973; Tada 1975 
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z ttttr/~ 
\ 
I 
\ 

F(B) = 1.211- .186v'Sill0 

or FQ(B) = (1.211- .186v'Sill0)(1.211- .186~) 

y 

a. 

o-

tm 
I 

(x = 0 and y = 0: Free surfaces) 

Method: Alternating Method (Kobayashi), Finite Element Method (Tracey, Newman) 
Accuracy: 3% 
References: Kobayashi 1976; Tracey 1973; Newman 1981a; Tada 1985 

28.3 

NOTE: See page 28.1. F(()) is the free surface correction for a half-circular surface crack. Total correction for a quarter-circular 
comer crack is approximately equal to product of surface corrections for a half-circular crack. 
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\ 
I 

D l 
I 

/~ 
X 

(See page 24.16) 

Cl 

0 0. 

(x = 0 and y = 0: 

2 
KIA = -a,f/W, · F(B) 

7r 

2 
F(B) = 1- .72sinB+ .ll(sinB) 

2 
G( B) = 1.22 - .56 sin B + . 70( sin B) 

Method: Approximation of Numerical Results by Alternating Method (Kobayashi) 
Accuracy: 3% 
References: Kobayashi 1976; Tada 1975 

X a-
Free surfaces) 
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0 

' I 
l 
l 

/A 
X 

o-
(x = 0 and y = 0: Free surfaces) 

KIA =~a..j1m·F(O) 

or =~a Fa{ ( 1 + )2-) -2f [(cos0)312 v'1 +cosO+ (sin0)312 v'1 +sinO]}· G(O) 

2 

- (1-82).-_o 
F(O)- .311 + .154 2 , 0- 7rl 

1 + 40 14 

. 2 
G(O) = 1.245 + .04(sm20) 

(See page 24.17) 
Method: Superposition of page 28.4 (and also page 28.3) 
Accuracy: F(B) 4%; G(B) 3% 
Reference: Tada 1985 

28.5 
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CRACK(S) IN A Ron 

OR A PLATE BY 

ENERGY RATE 

ANALYSIS 

D (Bending, Shearing, and Tension/Compression) 

415 
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a »H a 

or 

where 

M2 
2EIB 

EI()2 
= 2a 2B 

1 1 1 
-=-+
I I, ]z 

M 

N 

N 

I1 , fz = moment of inertia of each cross section about its neutral axis 

Method: Energy Balance 
Accuracy: Approximation by Simple Beam Theory 
References: Tada 1974, 2000 

29.1 

::t, 

12 



29.2 Crack(s) in a Rod or a Plate by Energy Rate Analysis 417 

h 

~-------a--------~ 

(b) 

a~h 

(a) Special Case of 29.1 

M 

.,__ _______ a ------------~ 

~h = 0.62229, 911 = 0.37789 

or E'h3!z 
0.7888--;z-0 

2v6 a 

1 31 
or E h 12 

-0.6147--0 
2v'6 a 

(b) Special Case of 29.1 and 29.8; see Hutchinson 1992 
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O'::ii>H 

or 

where 

a2 2 
= 2EIBP 

1 1 1 
-=-+
I !1 h 

p 

p 

! 1 , h = moment of inertia of each cross section about its neutral axis 

Method: Energy Balance 
Accuracy: Approximation by Simple Beam Theory 
References: Tada 1974, 2000 

29.3 
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(d) 

h 
h 

Q>'?h 

_ _ 12 i (p) 2 or 
9-91--,-3 B-

Eh 

(b) 

h __ --====:::::::::=-__!___, 

~a~ 
Bh1 

r,=~ 

a~h 

Special cases of 29.3 

:[2 = 00 

(:t= Bh3) 
12 
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1--------t ----~ 

where 

or 

or 

1 1 1 
-=-+
I I, I2 

I1 , h = moment of inertia of each cross section about its neutral axis 

Method: Energy Balance 
Accuracy: Approximation by Simple Beam Theory 
References: Tada 1974, 2000 

29.5 
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l\,Cz » h 

6 £~ £~ (p) 2 
or 

Q®=E 1h3 7 B 

Special cases of 29.5 
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a>>B 

a~e 

---------- .... 

or 

1 Pa 
KIII = vf1 + v . v'2ffi 

KIII = __ 1_. 3£/1 {J 
v'f+ll i V2B 

M 

-------

or 

where 

1 M 
KIII = vf1 + v . v'2ffi 

1 EO {J 
KIII = V1 + v . --; V U 

1 1 1 
-=-+
! !1 ]z 

11 , 12 = moment of inertia of each cross section about its neutral axis 

Method: Energy Balance 
Accuracy: Approximation by Simple Beam Theory 
Reference: Tada 1974 

I, I.2. 

NOTE: Loads are applied through the shear center of each beam so as to produce bending only with no torsion. 

29.7 
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where 

w(TJ) = 0.909- 0.052TJ, "!(TJ) =sin 
-I 6TJ (1 + TJ) 

[ 2 l 
Method: Energy Balance/Integral Equations 
Accuracy: 1% 
References: Suo 1990a; Hutchinson 1992 

f(TJ)g(TJ) 
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(d.) 

(~ ~~ t~: 

~il J., >> h ~L~ ~~ ll: 

~---------------------------------~ h :=cr 
==================~ 

K1 = 0.4347 (]'Vh 

KII = 0.5578 (]'Vh 

Special cases of 29.8 



29.10 Crack(s) in a Rod or a Plate by Energy Rate Analysis 425 

\ 
~ h 

~2~ h 

where 
h 

s=--
a+h 

~( 2 3 4 5) F(s) = v 1 - s 1 + 0.5s + 0.375s - 1.081s + 5.580s - 4.601s 

Methods: Integral Transform Method (Keer; s:::; 2/3), Interpolation (Tada;s > 2/3) 
Accuracy: 1% 
References: Keer 1974, 1989, 1990; Tada 2000 

---... (j -
) 

) 

) 
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2 (;h =cos w(17) · g 

. 2 gil = sm w(17) · g 

where 

w(17) = 0.909- 0.0521] 

Method: Energy Balance (Special Case of 29.8) 
Accuracy: Better than 1% for hj a > 1.5 
Reference: Suo 1990a 

29.11 

h 

H 



29.12 Crack(s) in a Rod or a Plate by Energy Rate Analysis 427 

Special cases of 29.8 and 29.11 
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h 

(ih 
y=QI+QII=-

4£1 

Method: Energy Balance/Integral Equations 
Accuracy: Accurate numerical values 
Reference: Suo 1990b 

91 = 0.09049 

gil = 0.90969 

29.13 



29.14 Crack(s) in a Rod or a Plate by Energy Rate Analysis 429 

Fiber Pullout Problem 

de bonded 

-----re~ ~-
----- '---= 1----- ,L >> D +--__....., 

where E1 =Young's modulus of fiber 

A = cross sectional area of fiber 

B =girth of fiber 

For circular fiber of diameter D: 

Method: Energy Balance 

£ = debonded length 

(Y =PIA 

Accuracy: Approximation by simple tension for fiber 
Reference: Tada 2000 
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debonded 

----?'T"" ~
\ 

\ I G~ -----r=-- = 
t'-- t»a.---~ 

where Gf = shear modulus of fiber 

29.15 

Twisting of Partially 
Debonded Circular Fiber 

4 

J = polar moment of inertia of fiber = 7r; 
B = circumference of fiber = 27ra 

e = debonded length 

(} = angle of twist 
3 

T = (T!J)a = 2T j(1ra ) 

Method: Energy Balance 
Accuracy: Approximation by simple torsion of fiber 
Reference: Tada 2000 



PART 

VI 

STRIP YIELD MODEL 

SOLUTIONS 

D Introduction to Strip Yield Model Analysis 

D Additional Notes on Strip Yield Models 

D Two-Dimensional Problems of Strip Yielding from Crack(s) 

D Two-Dimensional Problems of Strip Yielding from a Hole with or 
without Crack(s) 

D Three-Dimensional Strip Yielding Solutions 

431 



432 Part VI 30.1 

INTRODUCTION TO STRIP YIELD MODEL ANALYSIS 

The following pages are devoted to strip yield model solutions (sometimes called the "Dugdale-Barrenblatt 
model"; e.g., Barrenblatt 1962). This model is useful in assessing the effects of finite configuration size and 
high net section stresses on the plastic zone size accompanying a crack tip. It does give plastic zone size 
estimates with some improvement over the small-scale yielding analysis represented by Eq. (27) (p.1.11), but 
falls short of a full plasticity solution. Consequently, the formulas on these solution pages should be regarded 
as improved estimates of plastic zone size,£, as directly comparable to rp ofEq. (29) (p. 1.11). 

The strip yield model replaces the actual crack and its plastic zone, Fig. 30-1(a), with the superposition of 
two elastic crack solutions Fig. 30-1 (b) and (c). The crack length in the model, (b) and (c), is taken to be the 
actual crack length plus the plastic zone size, £. As in Fig. 30-1(c), the plasticity effects are modeled by 
applying closing flow stresses, u y, over the portion of the model crack surface where plasticity is occuring for 
the actual crack. At the new model crack tip the stresses must be finite; therefore the total crack tip stress 
intensity in the model must be zero, that is 

K total = K applied + K flow = 0 

This relationship is used with the appropriate elastic stress solutions for the model cracks to determine £ and 
other features of the solution. 

(a.) 

Actual Crack 

plt:lstic zone 

(a.) = (b) +(c) 

Model Crack 

(b) /'5 
====:==~\ 

+ 
(C) 

Kapplied 
(from aetua.l 
extern a. I too.ds) 

oyU II}(~ 
oy K+tow 

f-- t --1 (from plastic. 
flow stress) 

Fig. 30-1. Strip yield model. 

As an example of the application of this model, consider the case of small-scale yielding, that is, infinite 
sheets with semi-infinite cracks where the actual external loads are applied remotely (at infmity). The 
solutions on pages 3.1 and 3.7 are taken to correspond with Fig. 30-1 (b) and (c), respectively (using Mode I 
only). Therefore 

K applied 
Z applied = V21r( 

K applied = K applied 



30.2 

and 

2 { (i -i fi} 
Z flow = -:;;: O"y V ( - tan V ( 

2 
K flow = - -a-y~ 

7r 

Substituting the K formulas into the above expression for K total gives 

2 

C = '!!._ (K applied) 
8 O"y 

Strip Yield Model Solutions 433 

which corresponds well to the small-scale yield zone width rp (p. 1.11), considering that 1r /8 is nearly equal to 
the 1/ 1r in the rp formula letting (J" y equal (J"yp for plane stress. (For plane strain, note that the flow stress, (J" y, 

elevation due to constraint makes it about v'3(J" , which should be inserted into the equation for£.) The 
yp 

following solution pages give similar superpositions of pairs of stress solutions, corresponding to Fig. 30-1 
(b) and (c), but for the particular external configurations and loads indicated on the individual pages. 

ADDITIONAL NOTES ON STRIP YIELD MODELS 

From the preceding strip-yield analysis for small-scale yielding some additional notes are relevant. Since 
we are forming the solutions by superimposing two linear-elastic solutions, it is permissible to simply add 
stress functions for the model, that is 

Z total = Z applied + Z flow 

For the particular case of small-scale yielding discussed above the results lead to 

2 -1 (K applied !!f._) 
Z total = :;;: O"y tan 2a-y V 2( 

This result represents the complete local stress distribution for the small-scale yielding strip yield model (for 
any external configuration and loading). Similar results for large-scale yielding may be derived from 
corresponding information in this handbook. 

Note also that the above stress function, Z total' for large ( compared with £, that is, away from the 
disturbance ofthe plastic zone(£), reduces to 

K applied 
Z total ( (»f) = y"27i\ 

which corresponds to the original solution undisturbed by plasticity. 

Moreover, the so-called "crack opening stretch" (C.O.S.) which corresponds physically to the opening 
displacement at the actual crack tip (see Fig. 30-1), can be found by integrating the stress function, Z total' 
and evaluating the opening displacements, v, at the crack tip ( = -£,which for small-scale yielding results in 

K2 
8 = C 0 S = 2 I = applied 

. . . v (=-£ E' a-y 
g 

O"y 

Indeed, other interesting and relevant calculations can be made from strip yield models. The technique has 
been shown here and the essentials are suggested on the pages to follow. 
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SOLUTION FOR SMALL SCALE YIELDING 

{I) 

s ---1-:-0---x 

z=x+iy 

2a-y -1 {; Z(z) =-tan -
7r z 

- 2a-y£ { {z ( z) -1 re} Z(z)=---;- y-g+ 1+-g tan y; 

O= 2vl 
z=-e 

Sa-y£ K}APPLIED 
1rE 1 E'a-y 

9 
O"y 

where 

y 

0 

2 

£, = ?!._ (K1 APPLIED) 
8 O"y 

{II I} 

For (II) and (III), replace (Kn a-n v, E') by (KII, Tn u, E') and (K1II, Tn w, 2G), respectively. 
Method: Westergaard Stress Function (Superposition of pages 3.1 and 3.7) 
Accuracy: Exact 
References: Barenblatt 1962; Irwin 1969; Tada 1974 

NOTE: See pages 30.1 and 30.2. 

30.3 



30.4 

{I) 

or 

{II) 

Strip Yield Model Solutions 435 

p 

a--+4--
P 

£ = ~ ( 1 + (_!_) 2 
- 1) 

a 2 crya 

8 =~tanh -1 fC- Scryt' 
1rE' V~ 1rE' 

= Scryt' (2 ja+e tanh - 1 fC- 1) 
1rE' v-e- v~ 

{I I I) 

For (II) and (III), replace (P, CJY, E') by (Q, Tn E') and (T, Ty, 2G), respectively. 
Method: Superposition of pages 3.6 and 3. 7 (or a Limiting Case of page 30.6) 
Accuracy: Exact 
References: Tada 1974 
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(I I) 

ct ------

{I) 

or 

£ (pjay) 
2 

-;; = 2(pjay) + 1 

8 Spa h-1 {;£ =-tan -
1rE 1 a+£ 

For (II) and (III), replace (p, ay, E') by (q, Ty, E') and (t, Ty, 2G), respectively. 
Method: Superposition of Two Cases of page 3. 7 (or a Special Case of page 30.6) 
Accuracy: Exact 
Reference: Tada 1974 

30.5 
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...,.._ __ a. __ .....,.. 

~= (pjay)2 2{1+~-2 ~+(1-~)2(:Y)2} 
a 1-4(pjay) a 

8=- tanh ---tanh --Spa { -1 {;£ b -i v.£} 
JrE1 a+ C a b + C 

When 

(I I) (III) 

For (II) and (III), replace (p, ay, E') by (q, Ty, E') and (t, Ty, 2G), respectively. 
Method: Superposition of Three Cases of page 3. 7 
Accuracy: Exact 
Reference: Tada 1974 
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t t 

z=x+iy 

2a-y -1 (%)2 - 1 
Z(z) =-tan 

7r 1- (%)2 

- 2a-ya{ -182 -c2 z -1 Z(z) =-- tan --+-tan 
1r 2 2 a c -a 

8 = 2v I =Sa-y~ Cn(Cfa) 
z=±a 1rE 

where 
c ( 7f(J") 
-;;;=sec la-y 

,-.....---===..._~-- 't" 
(I I) 

w t 

For (II) and (III), replace (a-, O"y, v, E') by (T, Ty, u, E') and (T£, Ty, w, 2G), respectively. 
Methods: Westergaard Stress Function (Superposition of pages 5.1 and 5.12) (Mode 1: Dugdale; Mode III: 

Irwin), Dislocation Theory (Mode II, Bilby) 
Accuracy: Exact 
References: Dugdale 1960; Bilby 1963; Irwin 1969 



30.8 

\.0 

o.s 

0.2 

0 

(II) 

(I) p 
5 

a---..~. 

lo4-- c _......., ___ 

Strip Yield Model Solutions 439 

So-ya { c P ( -1 c V a 2)} 8=-- en-+-- cosh-- 1-(/.) 
1rE' a 2aa-y a c 

where c -1 a P 
-cos -=-
a c 2aa-y 

~\ 
' r-

" 1- " " t- ~ ..___ 
t-

I I I I I 

0 2 4 

cf'! 
I 

---..... 

I I 

,T ~ 
I 

For (II) and (III), replace (P, CJY' E') by (Q, TY' E') and (T, TY' 2G), respectively. 
Method: Superposition of page 5.9 (or 5.10) (b=O) and page 5.12 (or a Special Case of page 30.9) 
Accuracy: Exact 
Reference: Tada 1974 



440 Part VI 

(I) 

So-ya c -1 a c b -1 
8 = 1rE 1 £n-;; +cos ~ (-;;) - (-;;) tanh { (v 2 2 

where 

(III) I 
~T • . I 

T• 
I 

For (II) and (III), replace (P, cry, E') by (Q, Tn E') and (T, Ty, 2G), respectively. 
Method: Superposition of pages 5.10 and 5.12 
Accuracy: Exact 
Reference: Tada 1974 

30.9 



30.10 Strip Yield Model Solutions 441 

(I) 

So-ya { c p ( -1 8=--1 fin--- tanh 
1rE a cry 

1- (%)2)} 
1- (%)2 

(%) 2 -1 b -1 
-'-'-""-;;-----tanh 
(%)2-1 a 

where 

I· 
o.q 

o.s 
o.7 

o.G 
o.s 
0·4 
0·'3 

t.o 0·2 
0 0·2 oA· 0.6 0.~ f.O o 

--tJooo Pla-y 
(II) 

I 

~ 
(II I) 

It •q ~Sfa --1-- &~i~~ ·- ........ ''l I it ~ 

For (II) and (III), replace (p, an E') by (q, Tn E') and (t, Tn 2G), respectively. 
Method: Superposition of Two Cases of page 5.12 
Accuracy: Exact 
Reference: Tada 1974 



442 Part VI 

8crya { c !fjSc)2 -1 a P [ -1 8 = --, en-- - -1 cos -+-- tanh 
1rE a a c 2acry 

where 

{ 2 2} 312 
(~) +G) -1 a P 

cos -=--
(c)2 )(s)2 c 2acry - +(1 +a -

a a 

{
!(l+v) 

a= !(_1) 
2 1-v 

plane 

plane strain 

plane stress 

plane strain 

Method: Superposition of pages 5.8 and 5.12 
Accuracy: Exact 
Reference: Tada 1974 

30.11 
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30.12 Strip Yield Model Solutions 443 

~0. 
8 f s 

-+ ( Ja-2s) 
0. s 

c-----c 

rl t 

8 = -- Cn-- - -1 cos -+-- tanh 8Tya { c [G)Sc)2 -1 a Q [ -1 
(%)2 -1 (%)2 

2 2- a 2 
1rE1 a a c 2aTy (%) +(%) 1 + (%) 

where 

{ 
2 2 }

3h 
G)+(~) -1a Q 

-"--:;-----"----:;COS - = --Gf +(1 -a) (~f c 2aTy 

a= {! (1 + v) plane stress 

! ( 1 ~v) plane strain 

Method: Superposition of pages 5.8 and 5.12 
Accuracy: Exact 
Reference: Tada 1974 



444 Part VI 

8 =-- £n-- - -1 cos -+--tanh 4Tya { c [GGc)2 -1 a T -1 

1rG a a c 2aTy 

where (c)z (s) 2 -1 a T 
-;;; + -;;; cos ~ = 2aTy 

Method: Superposition of page 5.12 and Mode III solution corresponding to page 5.10 (a= 0) 
Accuracy: Exact 
Reference: Tada 1974 

30.13 



30.14 Strip Yield Model Solutions 445 

1 t t t t t t 

t 

' Uniform Tension + Wedge 

t t t t t t t 

(Tension + ) In-Plane Bending 

For some examples, see Seeger 1973. 



446 Part VI 

- 2o-ya {= -1 Z(z) = -- -tan 
7r a 

~p 
z=x+iy 

2o-y -1 
Z(z) =-tan 

7r 

(%)2 -1 

1- (%)2 
-1 

tan 

(%)2 -1 

1- (%)2 

1- c;. 2 -1 z 
(2 a) + V 1 - (%) sin -2 } 

(%) -1 c 

8o-ya { c . j 2 -1 a} 
8 = 2vl = -1r-E-, Cn~ + y 1- (%) cosh ~ 

z=±a 

2 v1- (~f = p~~a c 1- c~~a) where - or 
a 

--Q 0T 
I 

t 
(II I) I 

' + + 
Q----

For (II) and (III), replace (P, CTn v,E') by (Q, Tn u,E') and (T, Tn w, 2G), respectively. 
Method: Westergaard Stress Function (Superposition of pages 4.8 and 4.9) 
Accuracy: Exact 
Reference: Tada 1974 

NOTE: The Limiting Case of Net Section Yielding 

30.15 



30.16 

(II) 

p 

p 
l.... 

Strip Yield Model Solutions 447 

( I ) I 
' 

+ C-'-C: 

b ~ Gl b-----.1 

;~ ;,{~+(~)'- { m'-!}'+4(~)'(7;)'} 
liz 

I I 
I 

' 

+ + 

For (II) and (III), replace (P, an E') by (Q, Tn E') and (T, Tn 2G), respectively. 
Method: Superposition of pages 4.6 and 4.8 
Accuracy: Exact 
Reference: Tada 1974 



448 Part VI 

c 

a 

2 2 2 
(1 +P/CYy) - (bJa) (P/CYy) 

1 + 2P/CYy 

8CYya { ( p ) c p [ -1 0=-1 1 +- £n-+- tanh 
1rE CYy a CYy 

2 
1 - (%) +~tanh - 1 

2 2 
(hJa) -(%) a 

( I I) 

I 
{I I I) 

I 
' 

+ 
. 

+ . 
q 

I 

I I 

For (II) and (III), replace (p, O"n E') by (q, Tn E') and (t, Tn 2G), respectively. 
Method: Superposition of Two Cases of page 4.8 
Accuracy: Exact 
Reference: Tada 1974 

30.17 



30.18 Strip Yield Model Solutions 449 

u =-- ctn-+-- tan , 8uya {" c pha [ h-1 
1rE 1 a uy 

where 

plane stress 

plane strain 

1·5 
~r.+--2. 

t .ltl---....l.---1---'---t--TH }o=oo: ~ =/t -~p~(J)" o. v == o.a 
plane 

---- plane 

0 
0 -

Method: Superposition of pages 4.3 and 4.8 
Accuracy: Exact 
Reference: Tada 1974 

stres 

strai 

NOTE: For small values of S/a, C/a jumps to 0 when P;za = I. 
y 

•. o 



450 Part VI 

I 

c±c_,..-1-+~===F-~ 
I r:F=-a ___ ...~.. 

v =-- m-+-- tan ~ 8Tya {" c Qha [ h-1 
1rE 1 a Ty 

where 

v •0.3 
---plane stress 
----plane strain 

Method: Superposition of pages 4.3 and 4.8 
Accuracy: Exact 
Reference: Tada 1974 

NOTE: For small values ofS/a, c/a jumps to 0 when Qjza = 1. 
y 

plane stress 

plane strain 

30.19 
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30.20 Strip Yield Model Solutions 451 

~T,-------.-
• s 

v =-- m-+-- tan ~ 4Tya { 0 c Tha h-1 
1rG a Ty 

where: 

{f(s; Tf2a) 0 < Tf2a < 1 
S C ;a, Ty Ty 

when - < 1:- = 
a a Tf2a 

0 --= 1 Ty 

when :: 2: 1 : :_ = f (% , Tha) 0 < Tha 5:_ 1 
a a ~ ~ 

-0·75' 
1---+---t----+--~T-t { ThA?-JV4 

%= 1: %= t-(-y.(J 

I· 5' 

2 { :'TBA a.}l/2 
1---t---+----t----+--'>\1....% """CO: .% = \- ( 'Z'v ) 

ForSfa < 1, Cfajumps from VI- (S/a)2 to 0 at T~~a = 1. 
Method: Superposition of page 4.8 and Mode III solution corresponding to page 4.3(a = 0) 
Accuracy: Exact 
Reference: Tada 1974 



452 Part VI 

(I) f t + () t t t 
I 
I 

-+ ~X ... 
(1. 

c . c b .. , .. b Periodic 

+ • 0"'' • 
z=x+iy 

2cry -1 
Z(z) =-tan 

7r 

( . 1rc / . 1ra) 2 
1 smu; smu; -

1 ( . JrC/ . 1rZ) 2 
- sm2b sm2b 

8=2vl =cry(~b)f(~,:_) 
z=±a E b b 

where 

. 1ra 
sm-
___]J]_ = cos.!!!!.... 
sin JrC 2cry 

2b 

' 

For (II) and (III), replace ( cr, ern v, E') by ( T, Tn u, E') and ( Tp, Tn w, 2G), respectively. 
Method: Westergaard Stress Function (Superposition of pages 7.1 and 7.8) 
Accuracy: C/b Exact; 8 1% 
References: Irwin 1969; Tada 1974 

30.21 



30.22 Strip Yield Model Solutions 453 

( I ) 

r I I I . 

+ c:iJ + . 
I --b .. 1 • b--. Periodic Cracks ..... 

2 -1 Sill 2b . 1fC p ( , 1W) 
:;;:cos sin;; . sm2b = ay(2b) 

For (II) and (III), replace ( P,ay) by ( Q,Ty) and ( T,Ty), respectively. 
Method: Superposition of page 7.6(b = 0) and page 7.8 
Accuracy: Exact 
Reference: Tada 1974 

) 

/ 



454 Part VI 30.23 

2.0 

""" 
I 

0.61---+---+----1--h<-+----i 
otJu 

tO· 

- / 
- I 

J 
- v 

/ 

- /. 
/ 

J..- I I I 

1·2 

o. 2. OA· 0.6 o.S J.O 

-- 9-/c 
(I I) (III) 

For (II), replace a and ay by T and Tyo respectively. 
For (III), % = sec;;£ and 8 = 4:~a ln( %) (Infinite plate solution, page 30. 7) 
Methods: Successive Stress Relaxation (I and II). C/a was also obtained by superposition of pages 8.1 and 

8.4. 
Accuracy: -%-curve is based on accurate values and G (%)-curve is based on the values having 1% 

accuracy. 
References: Nishitani 1971b; Tada 1972a, 1974 



30.24 Strip Yield Model Solutions 455 

(I) 

c:__ t(_!_) 
c crya 

p 

1.0 

~' 
8- \ 

' 
o. 

'-
,, 

~ ~ ~'<::" ~Infinite Plate 
b 

........... ...... 
...... ~ -o. 2. ~ r-:::-- .._ 

-
0 

0 
I I I 

2 
I I I 

4 p - -
(I I) 

Q 

For (II), replace P and CJY by Q and Ty, respectively. 
For (III), see the infinite plate solution (page 30.8 ). 
Method: Superposition of pages 8.2 and 8.4 

CJya 

(I II) 

T. 

T 

Accuracy: ale- curve is based on the values having 1% accuracy. 
Reference: Tada 1974 

" 

---
I I 



456 Part VI 

( I ) 

t 

0 
c I bib 

oi.Q 
0.61----+----o:::-+--=-1'""----ii~H-l 

to.~~7111 

"C 

4 (II} 

l I 
1:: 

T 

or 

"t 

r 
(III} 

For (II), replace u and u Y by T and TY' respectively. 
For (III), see the solution for periodic cracks (page 30.21). 

,.o 

S!z 

~8h. 
'7:J 

Methods: Expansion of Complex Stress Potentials ( Isida ), Successive Stress Adjustments (Tada) 
Accuracy: Curves are based on values with better than 1% accuracy. 
References: Isida 1971b; Tada 1972a, 1974 
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31.1 

0 

or 

1 a { (3=--- 1+ ,fi COS 1fT 
2Ty 

When a = 1 (No Cracks): 

{ 
(3 = 1 

(3 =tan{; 

for 0::::: :{y::::: lJ2 
for 1J2:::; :{y:::; 1 

Method: Muskhelishvili's Method 
Accuracy: Exact 
References: Erdogan 1966; Tada 1974 

Strip Yield Model Solutions 457 

0 

( 7fT) =cos-
2Ty 

0 0-t;0 

NOTE: In Erdogan 1966, only an implicit solution was given in a more complicated form. 



458 Part VI 

1.0 

o.ca 

0.6 

~ 
I 
I 

t o.lt 

0.2 

0.2 

Method: Muskhelishvili's Method 
Accuracy: Better than 1% 
Reference: Rich 1968 

c 

• 
I 
I 
I 

I 
I o 
I ~ 
I~~ 

31.2 

t (} • t 

~=co: 'lr<r 
lfc =I-COS-c zoy 

o.4 o.6 0·8 1.0 

- o/O"'y 



31.3 Strip Yield Model Solutions 459 

R 2. 

0.6~---1-------i-------r-~ 

Method: Superposition of page 19.1 (A = 1 ) and page 19.3 (A = 2, p = o-y) 
Accuracy: 1% 
Reference: Tada 1974 

o.a 1.0 

NOTE: When 1>.1 > 1, use the curves above replacing a/ay and>. by >.a/ay and 1f>., respectively. Note that plastic zones develop at 
the top and bottom ends of the hole (when>.> 1, tensile plastic zones, and when>.< -1, compressive plastic zones). 



460 Part VI 

1.0 

0.8 

~ 0.6 
~ 

t 
0.4 

I 
I 
I 
I 

o.z 

Method: Muskhelishvili's Method 
Accuracy: Estimated at 2% 
Reference: Rich 1968 

31.4 

f o- + ' 
I 
I 
I 
I 

I 
I 
I 
I 

%=00: 
?c. =- (tan!~} 

t.O 



31.5 

See Nishitani 1973. 

+ • + 
0 0 0 

® ® ® 
t t t 
,. ~ t 
0 0 0 

® ® ® 
J + • 

Strip Yield Model Solutions 461 

f ~ t 
000 

®®® 
t t t 

6~~ 

®®® 
~ + + 



462 Part VI 

t 

Opening at Crack Tip: 

s(1-1i) a 
8 = CYya(l - -) 

1rE c 

Opening at Center: 

s(l-v2) . _, CY (. _, CY -Ia) 
80 = CYyasm -; sm -=cos -

1rE CYy CYy c 

Method: Superposition of pages 24.1 and 24.6 
Accuracy: Exact 
Reference: Tada 1974, 1985 

32.1 



32.2 Strip Yield Model Solutions 463 

I 

lp 

Opening at Crack Tip: 

s(t-v2) !fjSc)2 { -Ia ~-a} 0= O"yC - -1 COS -- --
7rE a c c+a 

Method: Superposition of page 24.2 or page 24.7 (s = 0) and page 24.6 
Accuracy: Exact 
Reference: Tada 1974 



464 Part VI 32.3 

Constant Ring Load p 

~~ ;,{!+ (~)\ {~- m'}'+(:,'::,)'} 
liz 

Method: Superposition of pages 24.5 and 24.6 
Accuracy: Exact 
Reference: Tada 1974 



32.4 

Method: Superposition of Two Cases of page 24.6 
Accuracy: Exact 
Reference: Tada 1974 

Strip Yield Model Solutions 465 

Constant Pressure p 



466 Part VI 

p 

p 

t 0.4 

o.2t---+---r---r---+---+--+---ir----+ 
v=-0.3 

o~--._--~-~--~--_.--~--~~~ 
0 2 ~ " 8 \0 12. 14- 16 

Method: Superposition of pages 24.7 and 24.6 
Accuracy: Exact 
Reference: Tada 1974 

p 

32.5 



32.6 Strip Yield Model Solutions 467 

tP 
i . 

_____ _,--

0 
10 
~ 0.2 t-------tr------+-----+----::.,L---+----to.2 

t 

-

Method: Superposition of pages 25.6 and 25.4 
Accuracy: Exact 
Reference: Tada 1974 

p 



PART 

VII 

CRACK(S) IN A SHELL 

D A Circumferential Crack in a Cylindrical Shell 

D Multiple Circumferential Cracks in a Cylindrical Shell 

D A Longitudinal Crack in a Cylindrical Shell 

D A Crack in a Spherical Shell 

469 



470 Part VII 

.;§;--- T 
l:l -A -T6 k t-ota.l - no trAck ero.c 

(]" = Pj(21rRt) 

Crack Opening Area and Additional Extension due to Crack: 

(]"R(J2 
f:lcrack = A/(27rR) = - 1- ·!(B) 

E 

I(B) = 1 + (~) 312 [s.6-13.3G) +24.o(~) 2 ] 

+ (~) 3 
[22.5- 75.0 (~) + 205.7 (~) 2 -247.5 (~) 3 +242.0(~) 4 ] 

33.1 



33.1a Crack(s) in a Shell 471 

Rotation (Kink) at Cracked Section due to Crack: 

<P(B) = 1 + (~) 3/z [s.2 -12.1(~) + 19.3(~) 2 ] 

+(~) 3 [2o.4- 6s.o(~) + 165.2(~) 2 -187.2(~) 3 +146.7(~) 4 ] 

Method: Approximations of Sanders' Solution (for K1 ) for Rft c::o 10. A, ~. ¢ Paris' Equation (see 
Appendix B) 

Accuracy: K 1 %; A, ~. ¢ 2% 
References: Sanders 1982; Tada 1983a, 1985 

NOTE: ~crack is the extension at infinity when uniform pressure u is applied on crack surfaces. 



472 Part VII 33.2 

(e < 110°) 

((})% ((}) 5;2 ((}) 
7
;2 

F(O) = 1 + 6.8 :;;: -13.6 :;;: +20.0 :;;: 

Crack Opening Area: 

I( e)= 1 + (~) 312 
[8.2- 12.1G) + 19.3 (~) 2 ] 

+ (~) 3 
[20.4- 68.0 (~) + 165.2 (~) 2 -187.2 G) 

3 
+146.7 (~) 4 ] 



33.2a Crack(s) in a Shell 473 

Additional Rotation (Kink at Cracked Section) due to Crack: 

~(0) = 1 + (~) 312 [7.8- 12.1 (~) + 14.5 (~) 2 ] 

+(~) 3 [18.5- 61.7(~) + 130.5(~) 2 -136.o(~Y +88.9(~) 4 ] 

Method: Approximation of Sanders' Solution (for KJ for R / t ~ 10. A, ¢ Paris' Equation (see Appendix B) 
Accuracy: K1 1 %; A, ¢ 2% 
References: Sanders 1982, 1983; Tada 1983a, 1985 



474 Part VII 33.3 

.;&--- r 
A =tl -t6 

toto.l no cra.ck ero.ck 

(]" = Pj(21rRt) 

F(B)=B+ 1-BcotB 

2 cot (} + v'2 cot ( 7r;;J) 

Crack Opening Area and Additional Axial Displacement at Infmity due to Crack: 

A= 4(]"R2 (y'2) . I( B) 
E' c 

2(]"R (y'2) 
flcrack = A/(27rR) = - 1 - • J((J) 

1rE c 



33.3a Crack(s) in a Shell 475 

Bend (Kink) Angle at Cracked Section: 

For numerical values of functions F(B),I(B) and <P 1 (B), see page 33.5. 
Methods: K Complete Shell Analysis (good for long cracks); A, ~crack• and ¢ Paris' Equation (see 

Appendix B) 
Accuracy: 1% for ). = e I y't!R ( = a/ VRt) > 5 
References: Sanders 1982, 1983; Tada 1985 

NOTE: ~crack is the axial displacement at infinity when uniform pressure u is applied on crack surfaces. 



476 Part VII 

Crack Opening Area: 

G(B)=sinO[l+~ 0-cotO(l-OcotO)] 
2 2 cot(}+ v'2cot ( 7rJ/) 

Bend (Kink) Angle at Cracked Section: 

¢ = ~ (v'2) · <I>z(B) 
1rE 1 c 

For numerical values of functions G( B), <I> 1 (B) and <I>2 (B), see page 33.5. 

33.4 

Methods: K Complete Shell Analysis (good for long cracks); A and¢ Paris' Equation (see Appendix B) 
Accuracy: 1% for .X= B/vff!R (= a/VRt) > 5 
References: Sanders 1982, 1983; Tada 1985 

NOTE: cp is also the additional relative rotation at infinity due to the presence of crack ( cp = c/Jtotal - c/Jnocrack)· 



33.5 

t 

FCe) 
a-

Crack(s) in a Shell 477 

o~~--~--_.--~--~--~--~--~--~--~--._~ 
0 20 40 GO 80 (00 

_..., a ( de9 ) 

re 2 
I(e) = J { F(eJ} ae 

0 
e 

- 3 'i1(9}= S F(e).G{9)cl9 

~~~ ~2.(8)= S9 { G-(9)y~c19 12(e) 

1(8) 
(6%) 

\20 

- 0 (9¥3) 

~~2r--.---.---.---.---.---r------,_~--~~---?~ .. 
~~~ 

t 
0~~~~~~--~--_.--~--~--~--~--~--~~ 

0 2.0 40 60 80 \00 \2.0 
~ e Cdeg) 

NOTE: Graphs are relevant for both pages 33.3 and 33.4. 



478 Part VII 

t 

= 0.9 + 0.25.A 

Crack Opening Area: 

(}" 

A= E' (2nRt) · G(.A) 

= .02 + .8l.A2 + .30.A3 + .03.A 4 

Methods: K1 Integral Equation; A Paris' Equation (see Appendix B) 
Accuracy: K1 1 %; A 2% 
References: Folias 1967; Fama 1972; Tada 1983a 

33.6 

t 



34.1 

R = mean radius 
t = wall thickness 

ap =P/(27rRt) 

Crack Opening Area: A= AP +AM 

where 

lp(O) = £n(sec0) 

Crack(s) in a Shell 479 

2 { 1 ( -) -( - -2 -3)} IM(O)=; 1 _ 0+1.411£n 1-0 +0 .411+1.6430-.5310 +.1200 

Method: K Approximated with Periodic Cracks (for P), Estimated by Interpolation (forM); A Paris' 
Equation (see Appendix B) 

Accuracy: K Expected to be better than 5%; A Expected to be better than 10% 
Reference: Tada 2000 

NOTE: No crack surface interference in compressive region is assumed. 



480 Part VII 

R = mean radius 
t = wall thickness 

Crack Opening Area: 

where 

crack 

(]'p =pI (27rRt) 

- -2 
FM(B) =~.1-0.50+0.3110 

2 V'1=B 

Method: Approximated with Periodic Cracks (for P), Estimated by Interpolation (forM) 
Accuracy: K Expected to be better than 5%; A Expected to be better than 10% 
Reference: Tada 2000 

NOTE: No crack surface interference in compressive region is assumed. 

34.2 



34.3 

R = mean radius 
t = wall thickness 

Crack Opening area: 

Crack(s) in a Shell 481 

crack 



482 Part VII 34.3a 

where 

Fp(O) = y'tan20/20 

lp(O) = £n(sec20) 

1 { 1 -( - -2 -3 -4)} IM(B) = v'2 £n 1 _ 0- () 1- 1.245() + .3330 - .044() - .005() 

Method: K Approximated with Periodic Cracks (for P), Estimated by Interpolation (forM); A Paris' 
Equation (see Appendix B) 

Accuracy: K Expected to be better than 5%; A Expected to be better than 10% 
Reference: Tada 2000 

NOTE: No crack surface interference in compressive region is assumed. 



34.4 

R = mean radius 
t = wall thickness 

Crack Opening Area: 

Crack(s) in a Shell 483 

crack 

A(~) =Ap(±)AMAB 
A 'II 

7rR2 
= £'{aplp(O)(±)aMJM(O)} 



484 Part VII 34.4a 

where 

Fp(O) = y'tan20/20 

FMA (B)= (0.707- 0.0700) I~ 

lp(O) = £n(sec20) 

1 { 1 -( - -2 -3 -4 -5)} IM(B) = '2 £n 1 -7J- () 1- 1.2440 + .329() + .235() - .1160 + .025() 

Method: K Approximated with Periodic Cracks (for P), Estimated by Interpolation (forM); A Paris' 
Equation (see Appendix B) 

Accuracy: K Expected to be better than 5%; A Expected to be better than 10% 
Reference: Tada 2000 

NOTE: No crack surface interference in compressive region is assumed. 



35.1 

Crack Opening Area: 

2 lj 
F(A.) = (1 + 1.25).. ) 2 

= 0.6 +0.9).. 

(]" 

A= E' (2nRt) · G(A.) 

G(A.) = A.2 + .625).. 4 

= .14 + .36)..2 + .72)..3 + .405).. 4 

Methods: K Integral Transform; A Paris' Equation (see Appendix B) 
Accuracy: K1 1 %; A 2% 
References: Folias 1965; Erdogan 1969; Tada 1983a 

NOTE: As a --> oo, K1 --> uyR ( ~ ·f) (Harris 1997). 

Crack(s) in a Shell 485 



486 Part VII 

( 2 3)1h F(A.) = 1 + 1.41A. + 0.04A. 

Crack Opening Area: 

(]" 

A= E' (2nRt) · G(A.) 

2 4 5 
G(A.) =A. + 0.705>. + 0.016>. 

Methods: K1 Integral Equations; A Paris' Equation (see Appendix B) 
Accuracy: K1 1 %; A 2% 
References: Erdogan 1969; Tada 1985 

36.1 

t 



APPENDIX A 

COMPLIANCE CALIBRATION 

METHODS 

A. DETERMINATIONS OF Q AND K 2 

As defined earlier and in Irwin (1954), the crack extension force, Q, can be given by 

dUr 
Q =- dA (system isolated) (Al) 

where Ur is the total strain energy of elastic deformation in the solid containing a crack, and dA is an 
infmitesimal (virtual) increment of new severed area. The system isolated requirement can be removed (Paris 
1965) by subtracting from Ur the increment of energy, 2: P;db..;, which enters the body during the movement, 
dA, of the crack. P; is one of the applied loads and D..; is the corresponding load displacement (parallel to the 
load). Thus, g is given by 

Q-" .d!::J.; _ dUr 
- L...JP, dA dA (A2) 

Because the generalization from a single pair of loading points with oppositely directed loads, P, to 
multiple loading points is obvious, consider Eq. (A2) in the simpler form 

QdA = Pd!::J.- dUr (A3) 

Assuming linear-elastic behavior, the load point displacement, D.. (total between the pair of loading points) 
and the strain energy, Ur, are given by 

where C is the compliance, and 

!::J.=CP 

1 
Ur=-M 

2 
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(A4) 

(AS) 
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Substitution of (A4) and (A5) into (A3) provides 

(A6) 

Note that Eq. (A5) implies that the plate specimen does not contain a system of self-balanced (residual) 
stresses. In the case of a plate-type specimen of thickness B, containing only one straight leading edge of the 
crack, and taking the crack size to be a, dA equals Bda. 
Thus Eq. (A6) becomes 

(A7) 

Further, if the plate-type specimen has a characteristic width W, and a Young's Modulus, E, Eq. (A 7) can then 
be written in the form [see Eq. (20)] 

(A8) 

where the derivative term in the equation is dimensionless. 
Eq. (A 7) suggests an experimental method for determining the proportionality of Q to P2 . Measurements of 

the ratio D./ P = C for a series of crack lengths (a-values) can be made over a range of interest. The required 
derivative dC / da, as a function of a, can than be obtained from these results. Early trials of this method for 
notched round bars and edge notched bars in bending are found in Lubahn (1959). In later efforts (Srawley 
1964), a long, single-edge-notched plate in tension was used and the results were directly compared to 
numerically computed values. In terms of the information necessary for the computation of K values, it 
appeared that an accuracy of better than 3% could be achieved by the experimental method in central portions 
of the series of crack lengths used in the calibration. Potential improvement in accuracy of the compliance 
calibration method is to be expected with increases of dC / da relative to the value of C. A list of fracture test 
specimens, in order of decreasing expected potential compliance calibration accuracy, is: 

1. Double-cantilever specimens 
2. Single-edge-notched bend bars 
3. Compact tension specimens 
4. Long edge-notched plates in tension 
5. Long centrally notched plates in tension 

With regard to accuracy, since the end result required is generally a K calibration, and K 2 does not depend 
E, a low modulus plate material such as a high-strength aluminum alloy can be used to increase the observed 
displacements. However, the value of E for the calibration material must be adequately known or measured.* 
Comments on the accuracy of various displacement gages are given in Srawley (1965). Contributions of 
plastic deformation at the loading points should be eliminated and influences of any plastic strain at the tip of 
the crack-simulating notch should be minimized. After establishing calibration, values of K can be obtained 
from various pairs of observations such as P and a, P and C, and D. and a. 

• It is not sufficient to use a literature value. 
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Fig. (A1). DCB specimen for measuring the tensile fracture toughness of an adhesive bond. 

Eq. (A 7) and (AS), coupled with compliance measurements, have been frequently used for double
cantilever (DCB) specimens. The conditions pertaining to the use of DCB specimens for measurements of 
tensile fracture strength of adhesive joints and, with face-grooving, for homogeneous solids are reviewed in 
Irwin (1971). Consider two adherent bars joined by a thin layer of adhesive as shown in Fig. (A1). 

If an estimate of C is made using simple beam theory with a correction for deflection due to shear, the 
following expression for Q can be derived. 

(A9) 

Eq. (A9) assumes each beam is "built-in" at a distance (a+ a0 ) from the loading line. The second term in the 
bracketed expression results from the shear correction and takes the simple form shown if one assumes 
Poisson's ratio is 1/3. Experimental results suggest a value of about h/3 for a0. These assumptions appear to be 
adequate for estimates of Q so long as a is larger than 2h and the unbroken ligament is larger than 3h. 
However, a calibration of improved accuracy can be readily developed through careful compliance 
measurements (Ripling 1964). 

Rip ling (1964) discusses a modified (tapered) DCB specimen shape such that dC / da does not depend 
crack size across a certain range of a values. In the case of all of the DCB specimens discussed above, the 
experimentors have relied primarily compliance calibrations rather than results derived from numerical 
analysis of the stress fields. 

Compliance calibration methods are applicable to plate-type specimens with through-the-thickness cracks 
for which thickness average values of Q are sufficient for experimental purposes. Compliance calibration can 
be used, with limited accuracy, for notched round bars in tension because Q is constant around the leading 
edge of the crack-simulating notch. In the case of a crack for which the variation of Q along various regions of 
the leading edge is appreciable and important, it must be remembered that measurements of the change of 
compliance with enlargement of the crack can provide only Q value averages. With regard to the relationship 
between the thickness average Q and K 2 , the assumption, K 2 = E Q, implied in the K 1c test method, ASTM 
E-399, can be regarded as adequate for practical applications. 

When a plate specimen is used as a model of a service component that contains a system of self-balanced 
(residual) stresses, attention must be given to the possibility that the residual stresses may hold the crack 
partially closed during initial portions of the externally applied loading. In the absence of this complexity, a 
plate specimen can be used to determine that portion of K that is due to the external loading. The remaining 
portion of K, due to the residual stresses, can be found from knowledge of the residual stresses using the 
analytical or numerical methods discussed in Part 1. 
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B. RELATIONSHIP OF Q TO J 

In this section, J is given a restricted interpretation as merely an expression for Q applicable to a non-linear
elastic as well as to a linear-elastic solid containing a crack. Thus Eqs. (Al) and (A2) may be regarded as 
definitions of J (Rice 1968a). For simplicity this discussion is restricted to two-dimensional crack stress 
fields. Eq. (A2) suggests a plan for representing J as a path-independent contour integral enclosing the crack 
tip, as follows. Because the solid is elastic, energy disappearance can occur only at the crack tip singularity 
during its forward increment of (virtual) displacement. Thus the net flux of energy inward across the boundary 
of any area enclosing the crack tip must give the same value, J. In the construction of a J contour integral, the 
summation of input work, 2:: Pidb..i, can be replaced by its equivalent in terms of the integral of each 
boundary stress times the parallel increment of displacement for the individual segments of the contour. In 
addition the change of stress field energy that occurs inside of the contour must be subtracted. 

Assuming an increment, da, of forward (x-direction) displacement of the crack tip, and assuming the 
coordinate normal to the crack is y, one finds 

(AlO) 

where U is the strain energy density. 
Obviously da can be eliminated from each side ofEq. (AlO). Next, consider the fact that the location of the 

contour relative to the crack tip, after the crack tip has been displaced an infinitesimal amount da in 
the x-direction, is equivalent to rigid displacement of the contour by an equal infinitesimal amount, dx, in the 
opposite direction. Thus the calculations indicated in Eq. (AlO) are unchanged if fa is replaced by-£. With 
regard to the preceding term ofEq. (AlO), note that the substitution of-£ for fa permits completion of the 
x-direction portion of the integral or 

J J dxdy(~~) = f Udy (All) 

The final result is 

J= dy U-CYx--Txy- +dx Txy-+CYy-f [ { au av} { au av}] 
ax ax ax ax (A12) 

Eq. (A12) can be expressed in more compact form. However, the form given above is convenient for 
purposes of numerical computation. As a check on the path independence ofEq. (A12), one can equate£ of 
the coefficient of dy to iy of the coefficient of dx. After use of stress compatibility relations, the result is 

au &x &y a,xy 
-=CYx-+CYy-+Txy--ax ax ax ax (A13) 

Given the existence of a set of stress-strain relations, linear or nonlinear, which are strain-path independent, U 
can be represented as 

(A14) 
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From the assumptions, the integrand of each integral can be regarded as a function only of the corresponding 
integration variable, E~, E~ or 'Y~y- The derivative of Eq. (A14) then results in Eq. (A13). 

In later applications, the path independence of Eq. (A12) will be of special interest because the path of 
integration can be taken around the fracture process zone, well within the region of pronounced nonlinearity, 
yet outside the region containing advance separations and localized slip displacements special to the 
progressive fracturing process. Thus J can serve as a characterization of the stress-strain environment 
enclosing the fracture process zone. 

Anticipating a later discussion of J with plasticity present, without discussing applicability of J inside a 
plastic zone, it is clear that the J-lntegral is path independent for any contour on or outside the elastic-plastic 
boundary. When the plastic zone of an opening mode crack is modeled as a Dugdale or strip-yield zone 
extending directly forward from the crack tip, it is easily shown that J = ay8, where 8 is nominally the crack 
opening stretch and ay is a flow stress property assumed to be constant along the strip plastic zone. Tada 
(1972a) presents calculations that tend to support the likelihood of close equivalence between J and values of 
g computed using linear-elasticity with an adjustment of the crack size. Given a crack-tip plastic zone which 
does not contact a free surface of the specimen, other than the crack surfaces, and drawing the J-lntegral 
contour as a circle enclosing the crack-tip plastic zone, calculation of g using linear-elastic assumptions but 
with the crack-tip moved into a central position within the plastic zone may give a result similar to the J-value. 

Returning to compliance calibration methods, it is evident that Eq. (A3), rather than its equivalent, in the 
form of Eq. (A12), is of most interest as a basis for compliance calibration. Assuming only two oppositely 
directed loads, P, as before, a series of P versus ~lines for a series of crack sizes, a, will not be straight lines, 
as with linear behavior. However, values of J times da (where da is the difference of the crack lengths for 
adjacent curves) can be determined as a function of~ by careful planimeter measurements, by curve fitting 
and integration, and so on. In the case of nonlinear behaviors such that slope dP / d~ is small in the region of 
measurement, it is most convenient to plot J as a function of~ for the series of crack lengths of interest. The J 
determinations can then, if desired, be based observations of a and ~-

C. CRACK SIZE DETERMINATIONS 

Part A of this section discusses determinations of C as a function of crack size. In the case of DCB 
specimens, the sensitivity of~ at fixed load to crack size is adequate for the purpose of using the ~IP ratio to 
determine the crack size. In other specimens, determinations of crack size from displacement-load ratios are 
usually more accurate when a different choice is made of the displacement measurement position. For 
example, with a centrally notched tensile specimen, the opening at the notch center is a convenient and 
appropriate choice. In the case of long single-notched tensile specimens, the opening at the free edge 
intersection of the crack is often used. In order to use a displacement-load ratio to estimate crack size, an 
accurate calibration based measurements of this ratio in the range oflinear behavior for a series of crack sizes 
can be used. 

Moreover, many analytical expressions for these displacements are found in this handbook. In the case of 
thin-sheet testing to determine cracking resistance, restraints against out-of-plane deformation (buckling) may 
be advisable. Even when such restraints are used, the displacement-measuring device should be designed so as 
to indicate only center-plane displacement or so as to compensate for small amounts of out-of-plane bending. 

Testing or application situations where the plastic zone size is appreciable relative to the crack size are not 
uncommon. In such cases it is a common practice to compute K on the basis of an effective crack size. The 
addition ofry to the crack size at each crack-tip involves uncertanities with regard to choice of a and ay in the 
equation 

(AlS) 
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As an alternative, one can determine the effective crack size from the "effective compliance," where the 
effective compliance is simply the ratio of deflection to load at the load for which a calculation of K is desired. 
Trials with analytical elastic-plastic models have shown that different choices of the displacement 
measurement position will cause differences in the effective crack size estimate. However, these differences 
are relatively small. Any disadvantage ofthis kind appears to be outweighed by the advantage of avoiding an 
arbitrary choice of a and ay in the ry equation. 



APPENDIX B 

A METHOD FOR COMPUTING 

CERTAIN DISPLACEMENTS 

RELEVANT TO CRACK PROBLEMS 

In earlier sections, g was shown (see page 1.6) to be equivalent to the rate of increase of the total strain 
energy, Ur, with increase in crack area, dA, and loading forces constant. That is to say 

Q= 8Url 
oA 

Forces Constant 
(Bl) 

Consider a body loaded by forces, P, which in addition has virtual forces, F, applied as in Fig. (Bl). (No 
generality is lost in considering a single force, P, and its support reaction and a single pair of forces, F, in 

==tl 
\ aA 
\F 

Fig. 81 

equilibrium any distance, d, apart in the undeformed 
position.) The total energy rate, Q, can be, summed 
for the three modes, that is, 

(B2) 

as was illustrated earlier (see page 1.7). Moreover, the 
resulting K; values for each mode due to loading 
forces and virtual forces may be added, or 

(B3) 

using the relationships between K; and energy rates 9; 
(see page 1. 7), that is, 

(B4) 

where E' and a are elastic constants depending on stress conditions, plane stress or plane strain. Combining 
Eqs. (B2), (B3), and (B4) gives 

(BS) 
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With the above information and Castigliano's theorem, it is possible to compute certain displacements in 
the manner suggested by Paris (1957). Castigliano's theorem states that displacement of any load Q (in its 
own direction) may be computed by 

(B6) 

The total strain energy may be regarded as that due to applying loading forces with no crack present plus 
that due to introducing the crack while holding forces constant, or 

(B7) 

Introducing Eqs. (Bl) and (B6), displacement can be computed from 

A 
~ =aUT= aUNoCrack !!_1 QdA 

Q aQ aQ + aQ 0 
(B8) 

where it may be interpreted that 

aUNoCrack ~ 
aQ = QNoCrack (B9) 

Thus substituting Eq. (BS) into (B8), and allowing the virtual forces to approach zero (F ~ 0), gives 

21A ( aKfp aKIIP aKIIIP) 
~p = ~p No Crack + E I 0 Kfp aP + KIIP aP + a KIIIP 8P dA 

or (BlO) 

21A ( aKIF aKIIF aKIIIF) 
~F=~FNoCrack+E, 0 Kfp aF +KIIP aF +aKIIIPaF dA 

Therefore displacements l:J..p or D..F may be computed from displacements with no crack present and a 
knowledge of K-formulas by using Eq. (BlO). This result adds interest in concentrated force K-formula 
solutions for forces such as F, as their displacement may be computed directly. 

Special Case of Opening Displacements of Crack Surfaces 

When computing relative displacements of crack surfaces, the displacements with no crack present are zero, 
that is, 

~No Crack = 0 (Bll) 

Moreover, if opening mode (Mode I) displacements are desired, as indicated in Fig. (B2), then normally 

aKIIF = aKIIIF = O 
aF aF 

(B12) 
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Furthermore, until the crack, a, grows beyond the forces, F, it 
is observed that 

(B13) 

Using Eqs. (Bll), (B12), and (B13), in conjunction with Eq. 
(BlO), gives 

(B14) 

Now both factors in the integrand are functions of crack size a 
and load P (but not F). By inserting formulas for KIP and KIF in 
Eq. (B14), it can be directly integrated for many cases. 
Integration can be assisted by series or polynomial expansions 
in difficult cases. 

Opening Displacements Near a Crack Tip 

For displacements near a crack tip, that is, c << (aF and other planar dimensions), then the form for KIF is 
(see page 3.6) 

(BlS) 

The expression for KIP may be replaced by a power series about aF (or in the variable a- aF) 

Substituting Eqs. (B15) and (B16) into Eq. (B14) with the variable x =a- aF results in 

(B17) 

Performing the integration 

4Vl [ 1 {)KJp(P, aF) 312 ] 
D.F = VJiE' KJp(P,aF)Vc+3 oa ·C + ... (B18) 

If cis very small compared with aF and other planar dimensions, then KIP (P, aF) ~KIP (P, ac) =Kip, and 
neglecting second-order terms, Eq. (B18) becomes 

(B19) 

This result, Eq. (B19), is an example ofthe use ofEq. (BlO) to obtain a particular result, the elastic opening 
of a crack near its tip. Other examples are easy to add, such as those opening displacements of cracks used for 
experimental purposes when measurements are made with "clip gages" (e.g., see pages 2.4, 2.8, 2.11, 2.17, 
2.20). 
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Example I 

t + o- t t 

A~ 
a....._a:j 

'F 

+ ~ <T • + 

Example II 

Example III 

a 

B.4 

For the figure shown, the K-formulas (see pages 5.1 and 5.9) are 

Kicr = O"VJW 
F 

KIF=--
VJW 

K11 = Klll = 0 

Note again that D..nocrack is zero. Then Eq. (B10) reduces to 

{ 2u1a } 4ua 
/::;.F = E, 

0 
da x 2 = E' 

where the additional factor of 2 occurs because two crack tips 
contribute to the displacement computation. 

Similar to Example I (pages 8.1 and 8.2): 

Proceeding as before 

Kicr = 1.1215 O"VJW 
2F 

KIF = 1.30 ;;;;;; 
y7ra 

For a semi-infmite plate with a semi-infmite crack leaving a neck 
of width a, subjected to pure momentM, applied at infinity as shown 
(see page 9.1): 

3.975M 
KIM =--3-

a/z 
K11 = Klll = 0 

Applying the first form ofEq. (B10) to obtain the relative rotation, 
()M, of applied moments at infinity, note that ()No crack is zero and then 

00 2 
()M =~1 (3.975) M (-da) = 15.8M 

E' a a3 E' i 



APPENDIX C 

THE WEIGHT FUNCTION METHOD 

FOR DETERMINING STRESS 

INTENSITY FACTORS1 

Bueckner (1970, 1971, 1972) devised a method of determining stress intensity factor solutions, 2 which has 
also been discussed by Rice (1972). The method depends mainly on the reciprocal theorem and other energy
method-like considerations. The method may also be extended to computations of displacements in a manner 
almost identical to that in Appendix B. For an elegant presentation of the method in all generality, the reader is 
refered to Bueckner (1970, 1971, 1972) and Rice (1972). Here, the most important results are presented in a 
simplified manner. 

The following analysis shows that if the complete solution (for its stress intensity factor and displacements) 
to a crack problem for one loading system is known, then the solution (for K) for the same cracked 
configuration with any other loading may be obtained directly from the known solution. To show this, 
consider a cracked body with loads P 1 , P2 ... , PN as the independently applied loads. From previous results 
and defmitions (see pp. 1.6 - 1.8 and Appendixes A and B), the Griffith energy rate is 

(Cl) 

where the displacements of loading points, u;, can be written in terms of elastic compliance coefficients, 
CiJ (a), as functions of crack length, a 

N N 

u; = L~ = LC;J(a)P1 (C2) 
j=l j=l 

Because of the reciprocal theorem CiJ = C1;, which was used in writing the above equations. 
On the other hand, the Griffith energy rate may be written in terms of stress-intensity factors (see p. 1.8) as 

1 Paris 1976. 

2 N N 
K 1 "=-=-" "k·(a)k·(a)P·P· ~ E' E' L...J L...J I 1 I J 

i=l j=l 

(C3) 

2 For earlier "Green's Function" from concentrated force solutions with results similar to weight functions, see Paris (1957, 
1960), Barenblatt (1962), and Sih (1962b ). 
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since the stress intensity factor, K, is linearly dependent on the loads, Pi, or 
N N 

K = LK; = Lk;(a)P; (C4) 
i~l i~l 

Equating the double sums in both results for Q above,3 that is, (Cl) and (C4), and noting that since this 
must be true for any values of the loads, P 1 , P2 , ... , PN, the coefficients must be identical, term by term, then 

k;(a)~(a) ~ ac;j(a) 
E' 2 8a 

(CS) 

Let a full solution be known for just one of the loads, say Pm. Then, rearranging the latest result 

k;(a) = E' 8C;m(a)_l_ 
2 aa km(a) 

or from Eq. (C4) 

k;(a) = E' 8C;m(a)Pm 
2 8a Km 

(C6) 

By saying the solution is known for a load, Pm, it means that Km is known and Cim is known, since the 
displacements, um, for the load at Pm are presumed to be known and from Eq. (C2) 

l 

Combining (C4) and (C6) 

m 

C - u; 
im-

Pm 

N 1 N ( ) 
K = "'k·(a)P· = !! _ _Pm "'8C;m a p. 

L..JI I 2KL..J aa I 
i=l m i=l 

(C7) 

Thus K can be found for loads, Pi, from results obtained from just one load, P m. This is the desired result. 
For arbitrary distributed tractions, T(s), over a surface, s, instead of discrete forces, Pi, the form of the result 

(C7) becomes 

K = J fm (s, a)T(s)ds (C8) 

wherefm (s, a) is the "weight function" as determined entirely from the solution for a load (or loading system) 
characterized by "m." For this result, note that 

{' ( ) - ....!!.:...._. aum (s, a) 
Jm s,a - () a 

2Ka a 
m 

(C9) 

where u m (s, a) are displacements at s in the direction of the tractions T (s) but caused only by the loading 
system characterized by "m." 

3 As suggested by J. R. Rice, private communication, 1974. 
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A Special Method of Determining the Weight Function - Mode I 

State CD 
(Mode I) 

Fig. C1 

State (2) 

In a two-dimensional problem, let loading state CD be the known loading state (corresponding to "m" 
above) where concentrated forces, P(J) are applied on the crack surface at a distance, c, from the crack tip. Let 
loading state ~(for the same configuration) be one of arbitrary tractions for which it is desired to determine 
Ko;l By reciprocal theorem: 

(ClO) 

where the displacements, u, form reciprocal work products (e.g., u~ is the displacement at the location of Pm in 
the direction of Pm but due to loading state ~). 

Now, presume that the distance, c, from the crack tip to the loading forces in state CD is very small (i.e., 
approaching zero compared with other dimensions). Then the displacement u~ will be within the crack-tip 
stress field for state ~or (seep. 1.2, Eq. (1), etc.) 

(Cll) 

Note that, due to the symmetrical (with respect to the crack) force system selected for state CD, only Mode I 
fields contribute work-producing displacements, u~, thus the K being computed here is only the Mode I 
component. Substituting (Cll) and rearranging (ClO) gives 

(C12) 
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As c diminishes to zero, let P!J)..jC remain a fmite constant, choosing for later convenience 

(C13) 

Considering the results on page 3.6, this leads to a local situation in state (])of 

(C14) 

As c approaches zero, the boundaries by comparison become infinitely far away. Again, substituting (C13) 
into (C12) gives 

(15) 

where TO) are the applied tractions and u<£ are now the corresponding displacements without applied loads but 
with insertion of a local Mode I singularity of z-312 type 4 of strength "B1 " as in (C14), at the crack tip where 
KO) is desired. The weight function is then 

(C16) 

Bueckner (1970, 1971, 1972) obtained a similar result by a less direct approach. 
It is easy to visualize inserting the local singularity described by (C14) into a finite element scheme to 

determine resulting displacements, u<£(a,s), for all mesh points with no other loads present. This has distinct 
advantages over other methods, as the solution generated applies to all possible loadings. Other results are 
possible using collocation or direct solutions using this method. 

This derivation considers Mode I only, and the resulting stress intensity factor in (C15) is of a Mode I type. 
However, it is possible to replace state (])with its Mode II or Mode III counterparts (seep. 3.6) and rederive 
results for KII and Kill, as well as K1 , as follows. 

-- 3 
4 Let the z- iz singularity be known as the "Bueckner Type," with its strength appropriately denoted as "B." 
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Mode II and Mode III Weight Functions 

State CD 
(Mode II) 

(a) 

Fig. C2 

State CD 
(Mode Ill) 

(b) 

By repeating the derivation of the preceding section, that is, (ClO) through (C16), but replacing state (Din 
Fig. Cl with its Mode II or Mode III counterpart, as shown in Fig. C2 (a) and (b), then weight functions may 
be developed directly for Mode II and Mode III stress intensity factors. The results are as follows. 

Mode II 

(C17) 

where u~ is now caused by inserting a local field of the Bueckner type at the crack tip of interest, that is, 

I 312 
~~=~Z ~~ 

Mode III 

(C19) 

where u~ is caused by inserting the Bueckner singularity 

(C20) 

Therefore it is equally easy to insert Mode II and Mode III singularities in problems to obtain the Mode II 
and Mode III weight functions 

E'u~(a,s) 
!IIm(a,s) = 4v2iiBII (C21) 
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and 
III 

GuCD (a,s) 
fmrn (a, s) = 2V2JrBm 

C.6 

(C22) 

where now Eq. (C8) may be applied individually for each of the three modes of stress intensity factors. 

Near Tip Bueckner Displacement Fields 

The displacement fields may be computed for Bueckner-type singularities, that is [see Eqs. (C14), (C18) 
and (C20)], 

Z(z) = B z I 3h 

for each mode, making use of the usual r, 8 coordinates (see Fig. 2, p. 1.2) and Eqs. (39), (56), or (59) as is 
appropriate for each mode. The results (for plane strain for Modes I and II) are as follows. 

Mode I 

Mode II 

Mode III 

w=O 

u = BIJ sin~ [2- 2v + cos~cos 3 BJ 
Gy'r 2 2 2 

v = BII cos~ [1- 2v + sin~sin 3BJ 
Gy'r 2 2 2 

w=O 

u=O 

v=O 

w = Bm 2sin~ 
Gy'r 2 

For plane stress for Modes I and II, replace v by v/(1 + v) and also note that w -1- 0. 

(C23) 

(C24) 

(C25) 

For generating weight functions, these fields should be inserted locally at the crack tip where K is desired. 
They are then the actual weight function displacements that should be used for loads near the crack tip. 

For a semi-infmite crack in an infinite body, these fields are the weight function displacements for the 
whole problem (two-dimensional problems). Some examples follow, in which these results are used for very 
simple problems so as to illustrate the method. The power of the method, however, is only fully appreciated 
with more complicated problems, when combined with numerical, finite element, and other procedures. 
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Closed-Form Weight Functions 

Closed forms for Westergaard stress functions, Z and Z, can be written to form weight function 
displacement fields throughout a body. The technique of finding such stress functions is much the same as for 
normal crack stress analysis problems, except that the crack tip for which the weight function is desired will 
have a z-312 (in Z) of strength, B 1 . Some examples are as follows (each applies to all three modes, I, II, III): 

NOTE: All Z and Z expressions below apply to all three modes as indicated here. 

y 

l--a-+--a 

symmetric about y-axis 

skew-symmetric about y-axis 

iB 
Z(z) =-3 

z/z 

- 2iB 
Z(z) = --1 

zh 

Z(z) = B,fia 
3!z liz 

(z- a) (z +a) 

- ~(z+a) 1h Z(z) = -B - -
a z-a 

Z(z) _ _ 2B_,/2a_2_a_,z,-

- ( 2 2)3/z z -a 

-( ) -2B,/2a Zz ----....,.,--
-(2 2)1/z z -a 

3!z 
Z(z) = B(2a) 3 

( 
2 2 ) Y2 z -a 

-( ) -2B,/2a z z z- ·-
- ( 2 2) 1/2 a 

z -a 
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w 

( ) - BVfG 
Z Z - 3 I 

(a-z) 12 (a+z) 12 

~ 1/ 
Z(z) =B (a+z) 2 

a-z 

I I 
-2B(27f tan 7rG) 2 cos 7fZ 

Z(z) = W W ~ 

[ 2 2] h 
(sin w) -(sin w) 

c.s 

I ly ~· 11 ! 
. : ~ ® I I---
L a-*-"l aj x ~a--·,-a_j 00 

w ~· w-------~··--~--~s 

! I; I _ 27ft 7fG 2 7fZ I f2 · 7fZ 
- W an W cos W 7ra 7r 27ra -I sm- 7ra 
Z(z)=B ( ) 1 +icot-(-sin-) Ilc[sin (.Jia),l,sin-] 

[ 2 2] f2 W W W Sill W W 
(sin w) -(sin w) 

J dcp 
IIc[<p,n,~ = 1 

( 2 )( 2 2 ) h l-n sin 'P l-k sin 'P 
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An Example of Finite Element Results 

As mentioned earlier, weight function displacements can be obtained using finite element analysis by 
putting a small hole at the crack tip and inserting the Bueckner-type field as boundary conditions on the hole, 
that is, by using Eqs. (C23) [or (C24) or (C25)] as boundary conditions on the hole, with all other surfaces 
stress free, in order to determine the state CD displacements, u<D. 

As an example, consider the single edge cracked strip for which a variety of loadings are avaliable with 
previously tabulated results (see Paris 1975a and pages 2.10, 2.13, 2.16, 2.27, 2.29, etc.). The particular strip 
selected here (see the figure on page 2.10) is a = bf2, 2h = 6b, with a circular hole at the crack of radius 
r = .006944b and v = 0.3. A mesh of352 elements and 398 nodes was used, as shown in Fig. C3 (with the 
inner circles of elements removed and enlarged for clarity). 

Table C 1 gives results obtained by simply inserting the displacement field, Eqs. (C23), at 25 points on the 
upper half of the hole, and constraining points on the crack plane ahead of the crack to remain on that plane. 
As implied, only one-half of the problem requires treatment. The points on the table are numbered as indicated 
on the mesh in Fig. C3 and located by coordinates X/b and Y/b· The corresponding components of the 
displacements, u<D, for use in the integral to obtain KHZ!' are 

Thus Kl(ZJ may be obtained from components of tractions for one-half of a problem (with respect to crack
plane symmetry) from 

Kl(ZJ = j (Txu + Tyv)ds 

Using this formula and the table, the following accuracies are observed in comparative results for various 
loadings: 

a. Uniform tension applied at the ends- 2.9% (seep. 2.10) 
b. Uniform pressure on the crack surface- <4.9% 
c. Pure bending (moment applied anywhere beyond Y/b = 1.5)- 3.2% (see p. 2.13) 
d. Four-point bending (with loads at Y/b = 1 and 3)- 3.2% 
e. Three-point bending (with a span of 4b)- 3.6% (seep. 2.16) 

This is only an example and better accuracies may be produced by finer finite element meshes. However, the 
table allows the reader to calculate K1 results of comparable accuracies for any loading for this configuration. 
Its advantages and generality are apparent. 

The same method applies to Modes II and III simply by using the proper fields, Eqs. (C24) and (C25). 
Moreover, it is also applicable to residual stress, thermal stress, and body force problems via simple 
superposition or direct application. The method is also applicable to three-dimensional finite element analysis. 
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y 

T 399 397 395 393 391 
I I I 

h 382 390 

b 
381 373 ...--a -?t--r 

- '-' I X 372 364 
t 
I 
I 363 355 
I 
I 354 346 
I 
I 
I 345 337 

I I 
L-------...J 

328 

316 

315 

302 

301 

126 101 76 51 26 2 27 102 

Fig. C3 
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Weight Function Displacements for an Edge Cracked Strip 

(~= 0.5, h r ) b = 3, 1/ = 0.3, b = .006944 

Point Xfb Y!b Ufb Vfb 

2 0.5069 0 - 2.736 0 
27 0.5156 0 - 1.767 0 

102 0.5625 0 -0.595 0 
177 0.75 0 0.285 0 

26 0.4931 0 -0.000003 9.575 
51 0.4844 0 -0.232 7.066 
76 0.4722 0 -0.269 5.930 

101 0.4566 0 -0.297 5.395 
126 0.4375 0 - 0.319 5.187 
151 0.3888 0 - 0.319 5.229 
176 0.3264 0 -0.346 5.670 
201 0.25 0 -0.368 6.374 
226 0.1666 0 -0.385 7.214 
251 0.0833 0 -0.393 8.084 
276 0 0 -0.396 8.960 
297 0 0.207 1.795 8.971 
295 0 0.3837 3.719 8.956 
313 0 0.5 4.988 8.933 
312 0 0.6516 6.634 8.908 
327 0 0.820 8.453 8.890 
326 0 1.00 10.401 8.887 
336 0 1.25 13.116 8.887 
345 0 1.50 15.838 8.889 
354 0 1.75 18.563 8.891 
363 0 2.00 21.289 8.892 
372 0 2.25 24.015 8.892 
381 0 2.50 26.740 8.892 
390 0 2.75 29.466 8.892 
399 0 3.00 32.191 8.892 
397 0.25 3.00 32.191 6.166 
395 0.50 3.00 32.191 3.441 
393 0.75 3.00 32.191 0.715 
391 1.0 3.00 32.191 -2.010 
382 1.0 2.75 29.466 -2.010 
373 1.0 2.50 26.740 -2.010 
364 1.0 2.25 24.015 -2.010 
355 1.0 2.00 21.289 -2.010 
346 1.0 1.75 18.564 -2.011 
337 1.0 1.50 15.838 -2.012 
328 1.0 1.25 13.109 -2.015 
316 1.0 1.0 10.371 -2.017 
315 1.0 0.820 8.386 -2.015 
302 1.0 0.6516 6.515 -1.980 
301 1.0 0.50 4.819 -1.912 
281 1.0 0.3837 3.525 -1.744 
279 1.0 0.207 1.774 -1.249 
278 1.0 0.134 1.228 -0.865 
253 1.0 0.0653 0.904 -0.437 
252 1.0 0 0.805 0 
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Closed-Form Examples 

Example (1) 

C.12 

Consider an infinite sheet with a semi-infinite 
crack subjected to a pair of equal and opposite forces 
(per unit thickness), P, as shown. The stress solution 
with a Bueckner-type Mode I singularity (and no 
loading forces) is 

BI 
Z(z) = -3 ( Any z) 

I(!) Z f2 

The stress intensity factor for the loads shown 
may be computed from 

Now because of x-axis symmetry 

From Eqs. (39), for plane strain conditions, 

where for plane stress, v can be replaced by v / ( 1 + v ). Substituting Z1CD and taking z = rei0 , etc. [see also 
Eqs. (C23)] 

v,_ = --sm- 2(1 - v)- cos-cos-B1 . (} [ (} 3(}] 
w Gy'r 2 2 2 

Continuing the substitutions 

K1 = sm- 2(1- v)- cos-cos-p . (} [ (} 3(}] 
(1 - v)v'lii- 2 2 2 

This result is a somewhat simpler form of the solution of page 3.4. 
For the special case r = b and e = n, the result is the same as page 3.6, or 

and for the special case r = y0 and e = ~· the result is the same as page 3.5, or 

K~--- --P [5- 4v] 
y0i'Yo 4 - 4v 
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Therefore in this case getting the K1 through the weight function method gives direct algebraic access to a 
simpler form for some uses. 

Note also from (C24) and (C25) that no Mode II or Mode III work is done by the forces, P, with these 
displacements. Thus KII = KIII = 0. 

Example (2) 

y 

B 

a~o 
X 

At great distances from the crack (y> >a) 

and integrating 

Consider a finite crack of length 2a, with a Bueckner
type singularity at one end. The stress function is [as 
verified from page 5.9 and Eq. (C13)] 

Z(z) = Bn/la 
I()) (z - a) 312 (z + a) '12 

Consider now the problem of uniform stress, O", parallel 
to the y-axis at infmity. Then 

Z(z) -+ Bn/la 
J(j)CO i 

B1v'fa 
Z(z) -+ ---

J(j)co Z 

Substituting these expressions for Z and Z into the expression for v [Eqs. (39), page 1.13] gives 

Thus from Eq. (C15) 

Example (3) 

J I d _ 47raB1v'fa 
T(J)u(J) s- E' 

For problems like Example (2), with y-axis 
symmetry, it is permitted to insert Bueckner 
singularities at both crack tips or 

Z(z) _ B1v'fa 2z 

I(j) - ( 2 2)312 
z -a 

Note that for z>>a, the stress function becomes 
twice the result in the previous example, that is, 

2Biv'fa 
Z(z) -+ --2-(z »a) 

J(j)CO z 
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where the analysis would follow in the same manner for 2K1 instead of K1 , as two crack tips are 
simultaneously considered. 

However, here it is very easy to integrate Znn (for any z) to obtain 

Z(z) 
/(!) 

2Br12G 

( 2 2) liz z -a 

(Any z) 

Hence it is possible to compute the weight function displacements easily for any point. 
As a special case consider the displacement only on the crack surface, that is, 

2Gv = 2(1 - v) ImZ1 + 0 (y = 0, lxl <a) 

2Gu=O 

or, substituting for Z 

For a crack surface loaded by compressive stresses symmetric with respect to both axes, u(x) = u( -x), 
then 

E' la 
2KI = . r-c 2u(x) · 2v(x)dx 

4y27rBI o 

which upon substitution gives 

2yla1a u(x) dx 

KI = Vir 0 ( 2 2) liz 
a -x 

and 

which are well known results. 
As another application consider equal and opposite forces P in the y direction at the origin, or 

E' I 2K1 = . r-c P · 2v x=O 
4v27rBI y=O 

which gives 

A result that is easily checked by page 5.9 
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Example (4) 

Mode I 

Mode II 

and for both modes 
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Consider a crack tip in a sheet that is subject to 
pinching forces P as shown. The displacement 
per unit thickness is 

-v 
UCD = fz = E ( (]"x + (]"y) 

which from Eqs. (38) and (55) becomes 

2v 
UCD = -- ImZII 

E 

B B ( 3() .. 3()) Z(z) =-=- cos--1 sm-
312 312 2 2 z r 

where substituting these results into (C15) and (C17) gives 

vP 3() 
K1 = 3 cos-

2v'2J[-R /2 2 

-vP . 3() 
Ku = 3 sm-

2v'2J[-R 12 2 

These expressions can be used to obtain 
results for a crack tip centered in a zone of 
radius R and pinching stress a to give 

-4v In 
K1= r-c_(]"VR 

3v27r 

Many other solutions for pinching load problems are compiled in Appendix E. 
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Example (5) 

a a 
s 
j_ 

p 

Now from Eq. (C15) 

X 

C.16 

Consider two opposing semi-infinite cracks in a plate 
leaving a neck of width 2a, loaded by opposing 
concentrated forces P, each centered on the neck at a 
distances from the plane of the neck. The stress function 
solution with a Bueckner-type-singularity at the right
hand crack tip is 

Z(z) = BV'fa 
312 112 (a- z) (a +z) 

J (i(a+:\ 'h 
Z(z) = Z(z)dz =By~ a_~) 

E' 
K = . r-c (2Pv) 

4v2JrB 

where v is the displacement at the load point to be computed using the above Z and Z in Eq. (39) or 

2 Gv = 2(1- v) ImZ- y ReZ 

The calculation could be carried out for any position of the loading forces (not necessarily on they-axis), 
but the algebra becomes messy. Thus for the location of loads as shown in the figure 

and 

- ~ s ImZ-B 
- a ( 2 2 ) 1/2 

a +s 

BV'faa 
Rez--_;_-....,-

- ( 2 2)312 
a +s 

Defining the distance between a load point and a crack tip as R or R2 = i + i, and combining expressions 

This result is noted as a simpler way to obtain K compared with the solution on page 4.3 (and pages 4.9, 
4.11, etc.). 
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ANISOTROPIC LINEAR-ELASTIC 

CRACK-TIP STRESS FIELDS 

Hooke's law for a homogeneous (rectilinear) anisotropic material is 

Ex = an CTx + a12 CTy + a13 CTz + a14 Tyz + aJsTzx + aJ6Txy 

Ey=a2JCTx+··· 

Ez = a31CTx + · · · 
"(yz = a41CTx + · · · 
"(zx=asJCTx+··· 

"(xy = a6i CTx + a62CTy + a63CTz + a64Tyz + a6sTzx + a66Txy 

where, from reciprocity, aij = a1i. 

(Dl) 

The generalized Hooke's law may be reduced by imposing conditions of plane strain (or stress) and pure 
shear to lead to tractable problems of determining crack-tip stress fields. Proceeding as in Sib (1965b) or 
Paris (1965), the crack-tip stress field equations can be written as follows. 

For plane strain 

(D2) 

+~ Re{-1 ( 1 _ 1 )} 
y'2iU- J.L1 - J.L, y' cos 0+ J.L2 sin 0 y' cos 0+ J.L1 sin 0 

where (other corresponding components of stress and displacement omitted) J-lt and f-l2 are from each of the 
conjugate pairs of roots of 

(D3) 

513 
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and where Aij are obtained by using the restrictions on strain to eliminate the appearance of z-components of 
stress to give 

where again, Aij = AJi. 

For pure shear 

C:x =Au (]"x + A12(]"y + AJ6Txy } 

C:y =Azi(]"x +Azz(Jy +Az6Txy 

/xy =A6i(]"x +A62(]"y +A66Txy 

r, - ...Kum.... Re{ 1 
yz - ,fi1rY v'cos B+p,, 

T _ -Kma Re{ s 
xz - ,fi1rY v'cos B+p,, 

sin(}}} 
sin(}} 

where t-ts is one of the conjugate roots of 

and where Aij are obtained by using the restrictions for pure shear to give 

(D4) 

(DS) 

(D6) 

(D7) 

The resulting stress intensity factors, K1a, Kna, and KIIJa, as defined above, are represented by K-formulas 
for the corresponding isotropic boundary value problems, except for cases of non-self-equilibrating loadings. 
Refer to Sib (1965b) or Paris (1965) for complete details. 

Finally, for the Hooke's laws defined above, the elastic coefficients, C, relating energy rates to stress 
intensity factors are 

Values of C (for the Case of Plane Stress') 

Mode Isotropic 

II 

Ill (l+v)/E 

Orthotropic 
A16 =Az6 =A4s = 0 

1 
zVA44Ass 

(D8) 

Anisotropic2 

_Au hn(Jl1 +Jl,) 
2 Jli Jl, 

Au 
2 Im(Jll + Jlz) 

'I 

1 (A44 A,-A:,) 2 

2 A44A,, 

The resulting values for C have been obtained in the same manner as outlined earlier, Eq. (16) (see page 1.7) but using 
Eqs. (Dl), (D2), and (D3) of this appendix. 

1 For plane strain_(Mode I and Mo~e II),.replace.E by E/(1-v2 ) for an isotropic material, and replace Aij by 
Aij - Az3Ap jA33 (z,J = 1, 2, 6) for an amsotrop1c matenal. 

2 For general isotropy, one mode is not decoupled from the other two modes. The expressions given in the table are the 
coefficients for each mode in the absence of the other two modes. 
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STRESS INTENSITY FACTORS FOR 

CRACKS IN A PLATE SUBJECTED 

TO PINCHING LOADS 

Analysis of cracks in an elastic plate near transverse loads (pinching loads) is of practical interest in, for 
example, accounting for the effect of spot weldings or contriving crack arresters. 

The fundamental solution for a pinching force applied near the tip of a crack is presented in Appendix C. 
Namely, the stress intensity factors K 1 and Kif are given for a semi-infinite crack in a plate subjected to a 
concentrated pinching force Pin plane stress conditions [Example (4), Appendix C]. The derivation of this 
solution is one illustration of the usefulness of the weight function method discussed in Appendix C. The 
solution is collectively given by 

vP 1 -i:Jf. 
K1 +iKn =--·-e 2 

2v'21r /h (El) 

where vis the Poisson's ratio and the coordinates (r, ()) are shown in Solution (1-1). 
This solution serves as the Green's function for a semi-infinite crack subjected to an arbitrarily distributed 

pinching load. That is, in the (r, ()) coordinate system, if the pinching load distributed on an areaS is expressed 
asp= p(r, ()),then the stress intensity factors are determined by 

. v J p(r, B) -iJf: 
K1 + 1 Kn = . !'C. - 1-e drdB 

2v27r s rh 
(E2) 

Most solutions for a semi-infinite crack in this appendix were obtained by using Eq. (E2). 
The solutions for concentrated pinching forces for other crack geometries (11-1, 11-2, III-I, III-2) were 

derived using the weight functions in Appendix C, and then several additional solutions were obtained by 
superposition or integration (11-3, 11-4; III-3, III-4, etc.). 

When the pinching load is a uniform compression over circular areas centered on the line of cracks, the 
customary method of integrating off the stress distributed in the absence of the cracks seems more convenient 
than the weight function method. Solutions (1-10), (11-5, 6, 7), and (III-5) were obtained by this method. 
Harris (1972) obtained the complete K1 solution by this method for the entire process for a semi-infinite crack 
to extend through a circular region under uniform pinching pressure initially located ahead of the crack 
(Solution 1-11 ). Harris also analyzed the effect of plate thickness (i.e., of the departure from the plane stress 
conditions). 

All solutions included in this appendix are exact in the plane stress conditions and represent the upper 
bounds of the effect of pinching loads in actual plates. 

515 
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The following are a few remarks on the crack-arresting effect of pinching loads. Only Mode I is addressed. 

1. As observed from Solution (1-1), pinching forces near the crack tip can have the crack-arresting effect 
(K1 < 0) only when they are applied behind the rays IBI = 1r13 (i.e., in the regions J:::; IBI :::; n). For 
example, when a circular area ahead of the crack is uniformly pinched, Solution (1-1 0), the pinching load 
contributes positive K1 until the crack extends some distance into the pinched zone. See the sequence of 
Solutions (1-10), (1-9), and (1-8); and also Harris (1972). 

2. The maximum crack-arresting effect is gained when pinching forces are applied on the rays IBI = 2nh 
The dependency on the distance from the crack tip is common for all directions. 

3. As readily observed from the comparison of Solutions (1-3) and (I-3a), when the pinching load 
distribution on a circular area r:::; R is given by a pressure p(r) or a line load p(r), for example, 
Solutions (I-3a), (I-4a), (1-5), and (1-6), the crack-arresting effect becomes 1.5 times as large if the load 
on the sector IBI :::; 7rf3 is removed. Or, if the same total pinching load can be distributed on sectors 
1r13 :::; IBI :::; 1r only, the crack-arresting effect becomes 2.25 times as large. 
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(1-1) 

(1-1 a) 

(1-2) 

Stress Intensity Factors for Cracks in a Plate Subjected to Pinching Loads 517 

Pinching force P at (r, B) 

vP 0 3(} 
Kn =- sm-3; 2 2.Jiif r 2 

Pinching forces Pat (r, ±B) 

Kn = 0 

Uniform pinching line force p on r ~ R, B = a 

vp 3a 
K1 =--cos-

VliR 2 

vp 0 3a 
Kn =---sm-

VliR 2 
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(1-3} 

(l-3a} 

(1-4} 

Uniform pinching line force p on circular arc 
r = R, 0:::; ():::;a 

vp . 3a 
K1 =--sm-

3v'27Jl 2 

vp ( 3a) Kn=- 3V27Jj_ 1- cos2 

Uniform pinching line force p on circle r = R 

Kn = 0 

Uniform pinching pressure p on sector r :::; R, 0 :::; () :::; a 

2vP In 3a 
K1 =--vRsin-

3v'27f 2 

Kn = ---vR 1- cos-2vp In( 3a) 
3v'27f 2 
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'-----------------· 
(l-4a} 

(1-5} 

(1-6} 

Uniform pinching pressure p on circular area r ::; R 

4vP In 
K1 = ---vR 

3v'27f 

Pinching force P distributed on circular area r ::; R 

p 1 
p(r) = -2 . ----;==== 

27rR V 1 - (r/R)2 

Kn = 0 

Pinching force P distributed on circular area r ::; R 

Kn = 0 
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(1-7) 

(1-8) 

(1-9) 

E.6 

Pinching line force on circle r = R 

p(R, e) = p0 cos (} 

KII = 0 

Pinching pressure distributed on circular area r :::; R 

r 
p(r, (}) =Po R cos (} 

KII = 0 

Uniform pinching pressure p on circular area r :::; 2R cos B 

vp .~ 
K1 = . I'>V7rR 

2v2 

KII = 0 
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(1-1 0) 

Stress Intensity Factors for Cracks in a Plate Subjected to Pinching Loads 521 

(1-11) 

Uniform pinching pressure p on circular area ahead of crack 

Kn = 0 

Crack in (1-10) extending through circular 
zone under uniform pinching pressure p 

Complete solutionj(h / R) is given in Harris (1972). (I-4a), (1-9), and (1-10) are special cases. Effect of plate 
thickness is also accounted for in Harris (1972). 
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-a 

y 

TP 
s 

(11-1} 

y 

t p 

s 

s 
.L p 

(11-1 a} 

(11-2} 

X 

a. )( 

Pinching force P at ( 0, s) 

vP (a s 

KI = -2y; ( 2 2)3h 
a +s 

-+ vP (a a 
KII±a--2y;(2 2)312 

a +s 

Pinching forces P at ( 0, ± s) 

{; s 
KI=-vP (2 2)312 

a +s 

K11 = 0 

Pinching force Pat (b, 0) 

KII = 0 

E.S 
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(ll-2a) 

ly 
T_ 
s p 

-a. a 

(11-3) 

l'f 
T-s p 

-a 0. 
p 

j_ 

(ll-3a) 
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Pinching forces Pat ( ± b, 0) 

ra b 
KI = vPy; ( 2 2)3h 

b -a 

Kn = 0 

Uniform pinching line force p on x = 0, 0:::; y:::; s 

X 

+ vp s 
Kn+ = _a - 2..j7ffi ~ 

ya +s 

Uniform pinching line force p on x = 0, IYI:::; s 

X 
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Uniform pinching line force p on x 2 b, y = 0 

+ vp (/ffi± a ) K+ = _-- ---1 
La 2,(iffi b+a 

Kn = 0 

(11-4) 

Uniform pinching line force p on lxl2 b, y = 0 

KII = 0 

(ll-4a) 

y Uniform pinching pressure p on circle r :::; R 

Kn = 0 

Kn = 0 

(11-5) 
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Uniform pinching pressure p 

KI = vp..fiW, _ ____,_( a_~__,R'-"')'--2----;--
[ 2] 3/z 
1 - (a-*R) 

Kn = 0 

(11-6) 

Uniform pinching pressure p 

I . 
I I 

~ 
1----b 

(11-6) is a special case with b =a+ R. 

(11-7) 
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( 

\ 

-a. 

-a. 

y 

TP 
s 

(111-1) 

y 
p 

s 

s 
l_ p 

(111-1 a) 

'f 

p 

-o. 

(111-2) 

0. 

I 
.) 

E.12 

Pinching force P at ( 0, s) 

Pinching forces P at ( 0, ± s) 

f; a 
KI=vP (2 2)3/z 

a +s 

Kn = 0 

Pinching force Pat (b, 0) 

KII = 0 
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(111-2a) 

y 

(111-3) 

s p 
j_ 

(111-3a) 
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Pinching forces Pat ( ± b, 0) 

ra a 
KI=vPy;-(2 2)3h 

a -b 

KII = 0 

Uniform pinching line force p on x = 0, 0 ::; y ::; s 

K + = + _v_p_ (1 ---:==a==) 
Il_a - 2y'7m Vi +l 

Uniform pinching line force p on x = 0, IYI::; s 

vp s KI = 
Fa~ ya +s 

KII = 0 
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- Uniform pinching line force p on 0 :::; x :::; b, y = 0 r { 

-~ 
J 

+ vp (VW. ) K+ =--- ---1 
!_a 2,fi{i a+b 

l ~ 
KII = 0 

(111-4) 

-': ;:::=_::tl1.--!fb-o.~~*.x 
Uniform pinching line force p on lxl:::; b, y = 0 

K _ vp b 
J-

Favi -b2 

KII = 0 

(111-4a) 

Uniform pinching pressure p on circular area r :::; R 

X 

KII = 0 

a ~ R : K1 = !!f Fa ( ~) 2 . ~ [sin -l ~ - ~ V 1 - (~) 2 
] 

KII = 0 

(111-5) 
NOTE: K1 is always positive. 



APPENDIX F 

CRACKS IN RESIDUAL STRESS 

FIELDS 

Analyses of cracks developed in residual stress fields (including thermal stress fields, etc.) are of practical 
importance in welded structures and in many other applications. The residual stress field is, in the absence of 
external loads, a self-balanced, built-in field. Determination of the intensity of the crack-tip elastic field for 
cracks introduced into the residual stress field requires no special treatment. The method is based on the 
superposition principle. 

The following two stress states should be superimposed to satisfy the free surface condition on the crack: 

a. The residual stress field in the absence of the crack 
b. The opening pressure applied on the crack surfaces whose distribution corresponds to a. 

That is, the effect of the presence of the crack on the resultant stress field is determined solely from stress state 
b. For example, the determination of stress intensity factor K1 is reduced to no more than the evaluation of an 
integral if the Green's function for K1 (K1 solution for a pair of concentrated splitting forces on crack surfaces) 
is known for the crack geometry of interest. For the examples on pages F.2 through F.S in this appendix, the 
K1 solution on page 5.11 is most conveniently used as the Green's function KJG. 

(Fl) 

Then the stress intensity factor for the crack absent stress distribution ay(x) is readily determined by 
integration. 

Similarly, for displacement solutions (crack opening area, crack opening displacement, etc.), the solutions on 
page S.lla may be used as Green's functions. Use of Paris' equation (see Appendix B), however, is often 
more convenient (i.e., integrations are simpler) for this purpose. 

The following pages contain solutions for various "crack-absent" residual stress distributions and crack 
geometries. An actual, practical situation may be approximately represented by one of these solutions. When 
additional external loads are also present, the total solution is obtained by superposition. 

529 
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Crack Opening Area: 

Opening at Center: 8 = 2v(O, 0) 

y 

a 
a=

c 

4CTo7fC 4 2 A=~ 1-(~-a) 2 { 
1/z} 

8=--·-COS 1+a -a 4u0 c 1 -1(~ 2) 
E' ..j2 

Method: K1 Integration of page 5.11 
A and 8 Paris' Equation (see Appendix B) 

Accuracy: Exact 
References: Tada 1983b, 1985 

F.2 



F.3 

Crack Opening Area: 

Opening at Center: 8 = 2v(O, 0) 

Method: K1 Integration of page 5.11 

y 

a 
a=

c 

A and 8 Paris' Equation (see Appendix B) 
Accuracy: Exact 
Reference: Tada 1985 
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Crack Opening Area: 

Opening at Center: 8 = 2v(O, 0) 

Method: K1 Integration of page 5.11 

y 

a 
a=

c 

2 2 

A= 20"o7ra e -·36a 

E' 

A and 8 Paris' Equation (see Appendix B) 
Accuracy: K1 0.5% 

A 1%for%:::;..fi 
8 2%for%:::;..fi 

References: Terada 1976, Tada 1983b, 1985 

NOTE: K1 < 0 for % :2:; ft 

F.4 

-.l..(~)'J. 2. 

ay<x>= eTc,· e a c:. { 1-<t-~} 

( ) oyCx)dx = o) --
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y 

-~ 

oy(x) = L r· 0';. [ -lXfc),:1 
110 ( 5 aycx>dx = o) _ ... 

Crack Opening Area: 

-Q 0 Q 

-o;.-

a 
a=

c 

KI = CToVmJ{ ~ (. -I 1 . 9=1) 
-Sill --~ 
1r a a2 

a:S:1 

a:2':1 

2 { 1 A= 2o-o 7ra 

E' 2. (.l..cos-'l+sin-'1_ Va2-1) 
1r a2 a a a2 

Opening at Center: 8 = 2v(O, 0) 

Method: K1 Integration of page 5.11 
A and 8 Paris' Equation (see Appendix B) 

Accuracy: Exact 
Reference: Tada 1985 

li-1~1 

ltl2:.1 

X 
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Crack Opening Area: 

y 2.1tl( oy (X)= 00 cos W 

1----W----t 

- W 1fZ 
Z1(z) = uo -cos-

7r w 

{ - } CTo W 1fX Im Z(x) =--cos-
lxl<::a 7r W 

( 1rz)2 ( 1ra)2 
sinw - sinw 

( 1ra)2 ( 1rx)2 
sinw - sinw 

2 2 
A = 2u0 W (sin 1ra) 

1rE 1 W 

Opening at Center: 8 = 2v(O, 0) 

8 = 4uo W sin 1ra 
1rE' W 

Relative Vertical Displacement at Infmity due to Crack: 

_ _A (- 1 . 1ra) ~(-~crack)- /w - 28sm W 

Methods: Westergaard Stress Function (Integration of page 7.7) 
A, 8, ~ also Paris' Equation (see Appendix B) 

Accuracy: Exact 
Reference: Tada 1985 

F.6 



F.7 

- W 1rZ 
Z1(z) = o-o -cos-

7r w 

y 
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4'1tX 
CJy(X) = CT'o C:.O$ W 

( 1rz)2 ( 1ra)2 [( 1ra)2 ( 1rz)2] sin W - sin W cos W -2 sin W 

W 1ra( 1ra)2 [ ( 1ra)2 ] K1 = o-0,fiW 1ra tan W cos W 3 cos W -2 

{- } croW 1rx Im Z1 (x) =--cos-
lxi:Sa 7r W 

( 1ra)2 ( 7rX)2 [( 1ra)2 ( 7r~ 2] sin w - sin w cos w -2 sin wJ 

Crack Opening Area: 

Opening at Center: 8 = 2v(O, 0) 

4o-0 W . 1ra ( 1ra) 2 
8 = --sm- cos-

7rE1 W W 

Relative Vertical Displacement at Infmity due to Crack: 

~( = ~crack) = AJw 

Method: Westergaard Stress Function (Integration of page 7.7) 
A, 8, ~ also Paris' Equation (see Appendix B) 

Accuracy: Exact 
Reference: Tada 1985 
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y 
oy(x)= a;; co.s~cos3:: 

..----W-----.! 

z=x+iy 

- W 1fZ 
Z1(z) = o-o -cos-

7r w ( 1rz)2 ( 1ra)2 { ( 1rz)2 1 ( 1ra)2} sinw - sinw cosw - 2 sinw 

{- } W 1fX Im Z1(x) = o-0 -cos-
lxi:Sa 7r W 

( 1ra)2 ( 1rx)2 { ( 1rx)2 1 ( 1ra)2} sinw - sinw cosw - 2 sinw 

Crack Opening Area: 

Opening at Center: = 2v(O, 0) 

8=--·sm- cos- +1 2o-0 W . 1ra [( 1ra)2 ] 
1rE 1 W W 

Relative Vertical Displacement at Infmity due to Crack: 

Method: Superposition of pages F.6 and F.7:! (F.6 + F.7) (or Integration of page 7.7) 
A, 8, b. also Paris' Equation (see Appendix B) 

Accuracy: Exact 
Reference: Tada 2000 

F.S 
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t---b 

Crack Opening Area: 
2 3 

ao1ri 1.258-1.62~+1.49(~) -.62(~) 
A = --. -----"-----:?'--"----"'.:...._ 

E' ( a)2 1-z; 

Opening at Edge: 
6 

4ao a 1.164- .36~ + .29( 1- ~) 
8 = -- . -------'"------,--'--""'--

E' ( a)2 1-z; 

Rotation (Kink) at Cracked Section due to Crack: 

¢; = ;~. C! ~) 2 
[23.8- 40.15~ + 19.55(~f -( 15.73- 11.24~) ~ ( 1- 2~) ( 1- ~) J 

Methods: K1 Integration of page 2.27 
A, 8, ¢ Paris' Equation (see Appendix B) 

Accuracy: K1 1 %; A, 8, ¢ 2% 
Reference: Tada 1985 
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3 

1.122- 4(~) a ( a) ( a)3 K1 = o-0 Vmi ------"""--:;-2 + 1.5- .375-- 1--

{ 1 + 2(~f} b b b 

Crack Opening Area: 

Opening at Edge: 

2 

o-o 1ri 1.258- .057 ~- 1.76 (~) 
A = -E-,-. ----~~==a=------"~ 

y1-b 

3 4 

4o-oa 1.454+.13~-1.72(~) -.76(~) 
8 = --. -------"'-----;=~'--------""''---

E' ~ y1-b 

Angle of Rotation (Kink at Cracked Section) due to Crack: 

Methods: K1 Integration of page 2.27 

2 

o-o (~) (23.8-28~) 
c/J=E,· A 1-

b 

A, 8, ¢ Paris' Equation (see Appendix B) 
Accuracy: K1 1 %; A, 8 2% for a;b ~ 0.65; ¢ 3% for a;b ~ 0.65 
Reference: Tada 1985 

NOTE: K1 < 0 for % ~ 0.65 

F.lO 



F.ll 

See page F.6. 
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2Jrx 
ay(x) = ao cosW 
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See page F.7 with W = 2b. 
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See page F.8. 
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(KI) . = K1s = ~ ao V1ffi · Fs (~) 
mm 7r c 

~'I. 
ClZ(Z=O)=GZ(X): 0: .!..:kL 

Q) 0 \+(t)"' 

s oz<x)dx =0 

Volume of Crack: 

-liD 

Opening at Center: 

A 

- o.s t-----t-------''r-+--'1::---~-t--"~--+-----1 
c:sl<> -:c 

'\ ......... 
c:sl<) 
0 0.6 t-----t------1+--~:-t----'\-----¥------1 

-- I -t-o/c 

Method: Integration of page 24.11 
Accuracy: Curves are based on numerical values with 0.1% accuracy. 
Reference: Tada 1985 

F.14 
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Volume of Crack: 

v = 16(1 -zi) O'oa3. a(~) 
3E c 

Opening at Center: 

Method: Integration of page 24.11 
Accuracy: Curves are based on numerical values with 0.1% accuracy. 
Reference: Tada 1985 
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"" cslc.l -~ .. -

'Z. 

tr; o;t('Z=O)=c;:(x)=CfO ei{lf( !-(~)") 
Volume of Crack: 

V = 16( 1- li) uoa3. G(~) 
3E c 

Opening at Center: 

cslc.> O.Lt·t-----+----+--;+--+-T---+-+-~.-------1 ...... 
~ 

t 

Method: Integration of page 24.11 
Accuracy: Curves are based on numerical values with 0.1% accuracy. 
Reference: Tada 1985 

F.16 



F.17 

y 
A 

2 { 1 (KI) . = KIB = -O'o..fiW. · 
mm 7r (a) FB c 

where 
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11<1 c-

~ > 1 

11<1 c-

~>1 

FB(~) = ~ [ (2-~)R- (2+~)R- (~) 2 (coth-1 Vi-coth-1 R+tanh-1 R)J 

Volume of Crack: 

Opening at Center: 

Method: Integration of page 24.11 
Accuracy: Exact 
Reference: Tada 1985 

11<1 c-

~>1 

11<1 c-

~>1 





APPENDIX G 

~ESTERGAARD STRESS 

FUNCTIONS FOR DISLOCATIONS 

AND CRACKS1 

INTRODUCTION 

The single-stress function approach of Westergaard (1939) is effective for a certain class of crack 
problems in which cracks occupy collinear line segments (e.g., along the x-axis ). Considerable effort has been 
expended on fmding Westergaard stress functions for various load-geometry configurations, and solutions 
have been obtained for many crack problems (Westergaard, 1939). Few Westergaard functions, however, are 
available for displacement-prescribed problems because of the presumably inherent mathematical difficulties. 
As noted in a few examples that were solved by other methods, the so-called "rigid wedge" problems or 
dislocation problems, where displacements of the crack surfaces are partially or wholly prescribed, seem to 
entail a great deal of mathematical complication involving, in general, single or multiple integral equations 
(Barenblatt, 1962; Sneddon, 1969a; Tweed, 1970). 

In this appendix, for ease of subsequent descriptions, the term "dislocations" is generally used in the 
following sense to distinguish it from the term "cracks": "dislocations" represent macromechanical "cracks 
with wholly prescribed surface displacements"; whereas "cracks" retain their ordinary interpretation as 
"cracks with wholly prescribed surface tractions." The micromechanical analogy of "dislocations" will 
prove to be physically and analytically evident. 

The objective of this appendix is to present a different approach to such dislocation problems and then 
extend it to combined problems of dislocations and cracks using the Westergaard stress function method. It 
will be shown that the stress functions for dislocations can be more easily obtained than those for cracks and 
also that the combined problems of dislocations and cracks are nothing more than the ordinary "crack" 
problems. 

The nature of displacement discontinuity and the resulting internal stress field due to a Volterra dislocation 
in an elastic medium are well known (Love, 1944; Cottrell, 1953). The three fundamental displacement 
discontinuities of this kind are of the form 

[u] = D..1Io [v] = D..Io and [w] = D..III on x < 0, y = 0 

where u, v, and w are, respectively, displacement components in x, y, and z directions, and D.. II, D..1, and D.. III 
are constants. These two-dimensional displacement fields correspond to the Mode II, Mode I, and Mode 
III displacements, respectively, in fracture mechanics. An analysis based on the theory of dislocation in 
crystals using distributed screw (Mode III) or edge (Modes I and II) dislocations has also received previous 
attention (Cottrell, 1953; Bilby, 1968). In this appendix, our attention is focused on Mode I problems. 

1 Published in two parts with some modifications: Tada 1993, and 1994. 
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A crack that is filled with a wedge of uniform thickness, the classical dislocation problem, leads to a 
Westergaard stress function having a lfz singularlity at the crack tip or at the end of the wedge. This 
observation readily leads to the Green's function (i.e., the solution for the "concentrated displacement" 
problem) for dislocation problems. It is then only necessary to integrate the Green's function to obtain 
Westergaard stress functions for dislocations with arbitrarily prescribed displacements. Once this method is 
established, the combined problems of dislocations and cracks are, in effect, reduced to the ordinary crack 
problems. The present method thus requires no more than integrations, even for the combined problems, and 
significantly simplifies the analysis. 

An analysis of dislocations is presented in the first half of this appendix, which is followed by an analysis of 
combined problems in the second half. Many examples follow both analyses, and some of them are discussed 
in detail. 

STRESS FUNCTIONS FOR DISLOCATIONS WITH UNIFORM 
THICKNESS 

We define the displacement among the x-axis by 

+ -
D(x) = 2v(x, 0) = v (x, 0) - v (x, 0) 

where the± signs indicate the upper and lower surfaces along y = 0. 

y 
z 

Fig. G1 

(Gl) 

First we consider the Volterra dislocation with discontinuity along the negative x-axis, as shown in Fig. G 1. 
The discontinuous displacement is given by 

Do (x) = ~ [1 - H(x)] 

(G2) 

or = ~H(-x) 

where H(x) denotes the unit step function. 
For Westergaard stress functions, Z(z), z = x + iy, the displacement along y = 0 is given by Eq. (39): 

2v(x,O) =~, Im{Z(z)} 
E y=O 

(G3) 
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where the notation Im { } and, for subsequent use, Re { } denote the imaginary and real part of { } , 
respectively, and Z(z) = J Z(z)dz, E' = E for plane stress condition, and E' = E/(1- v2 ) for plane strain 
condition (E' = 4aG). Noting that for polar coordinates (r,B) 

en z =en r+ j(} 

and that x > 0, y = 0 and x < 0, y = 0 give()= 0 and()=± n, respectively, Z(z), which is in agreement 
with the displacement condition of Eq. (G2) is given by 

- E'/1 
Z0 (z) =--en z 

47r 

The corresponding Westergaard stress function, Z(z), is 

E' /11 
Zo(z) =--

47r z 

(G4) 

(G4a) 

Eqs. (G4) and (G4a) are well-known functions for the Volterra dislocation, or for an edge dislocation with the 
Burgers vector b. in the y-direction. 

y 

X 

Fig. G2 

Next consider a few simple examples that are directly derived from the previous solution. The first example 
is a uniform dislocation of fmite length, as illustrated by Fig. G2. Since the displacement along the x-axis is 
given by 

D(x) = !1 [H{ -(x- a)} -H{ -(x+ a)}] 
(GS) 

or =D0 (x-a)-D0 (x+a) 

we can readily write the stress function Z(z) and Z(z) by superposition of two dislocations with opposite signs 
at (±a, 0): 

and 

Z(z) =Zo(z-a) -Zo(z+a) 

E' !1 ( 1 1 ) --- -----
47f z-a z+a 

or = E' !1 ( 2 2a z) 
47r z -a 

Z(z) =-en -- E'/1 (z-a) 
47r z +a 

(G6a) 

(G6b) 
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y 

X 
-a a 

Fig. G3 

Similarly, for two semi-infinite dislocations, as shown in Fig. G3, 

D(x) = ~[H{ -(x +a)} -H(x- a)] 
(G7) 

or =D0 (x+a) -D0 (a-x) 

thus 

Z(z) = E' ~ ( 2 2a 2) 
47r a - z 

(GSa) 

and 

- E'~ (a-z) Z(z)=- Cn-
47r a +z 

(G8b) 

For special dislocation problems under consideration, unlike usual stress-prescribed crack problems, there 
are no interactions (couplings) among stress functions and the stress functions are obtained by direct 
superposition of individual stress functions for each dislocation that exists independently. Thus for collinearly 
located dislocations, as shown in Fig. G4, since displacement discontinuities are given by 

(G9) 

'I 
.o, 

62 A4 An 
~3 C::.s 

I ~" I X [3, 0(2. (3 oc3 (3 'ols (3s Oln 
ol'+ (34 

Fig. G4 
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we can write the stress function Z(z) and Z(z) as 

Z(z) =- ~Ilk-----E' n [ 1 1 ] 
41!" k=l z - f3k z - ak 

(GlOa) 

and 

Z(z) =- ~Ilk Cn --- E' n (z- f3k) 
41!" k=l z- ak 

(GlOb) 

The situations shown in Figs. Gl, G2, and G3 are special cases of Fig. G4. In Fig. G4, if we put, for 
example, .6.1 =b., a 1 = -oo, /31 = 0 with b.k = O(k = 2, · · ·, n), .6.1 =b., a 1 =-a, /31 =a with 
b.k = 0 (k = 2, · · ·, n), and .6.1 = b.n =b., a1 = -oo, fJ1 = -a, an =a, f3n = +oo with 
b.k = 0 (k = 2, · · · , n - 1 ), we have the situations of Figs. Gl, G2, and G3, respectively. 

Another example is the periodic array of identical dislocations with discontinuity b., length 2a, and period 
2b, as shown in Fig. GS. 

y 

Fig. GS 

Substituting b.k =b., ak = 2kb- a, f3k = 2kb +a into Eqs. (GlOa) and (GlOb), we can write Z(z) and 
Z(z) as 

Z(z) _ E_'_!l ; ( 1 _ 1 ) 
- 47r k=-oo z - a - 2khz--+-a------,..,2kb= 

- E'!l oo 
Z(z) =- ~ 

41!" k=-00 

Cn (z-a-2kb) 
z+a-2kb 

(Glla) 

(Gllb) 

After some manipulations, we apply the identities given by Eqs. (G12a) and (G12b) to Eqs. (Glla) and 
(Gllb), respectively. 

00 1 1!"[1 ] ~ - 2--2 = -- -+cot(1ra) 
k=O k -a 2a 1ra 

(G12a) 

(G12b) 
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Then these functions are reduced to the following simple, closed-form functions: 

Z(z) = E_' !!,._.!!._[cot 1r(z- a)- cot 1r(z +a)] 
4Jr 2b 2b ---'-2-b----'-

- E'l!,. 
Z(z) =- fn 

47r 

. 1r(z-a) 
sm----u;-

. 1r(z+a) 
sm----u;-

G.6 

(G13a) 

(G13b) 

Note that either Eq. (G13a) or (G13b) can be derived directly from the other by the relationship 
Z(z) = J Z(z)dz or Z(z) = dZ(z)/dz. 

GREEN'S FUNCTIONS FOR DISLOCATIONS OF ARBITRARY SHAPE 

The previous results suggest the possibility of constructing stress functions for dislocations of arbitrary 
shape. We have considered so far the elastic response to dislocations whose discontinuous displacements are 
represented by the sum of the unit step functions. In order to obtain elastic solutions for dislocation problems 
of arbitrary displacement, it is more convenient to consider the elastic response to the dislocation displacement 
in the form of the unit impulse or the delta function. The delta function, 8(x), is related to the unit step 
function, H(x), as follows: 

D(x) = dH(x) = _ dH( -x) 
dx dx 

(G14) 

The same relationship is satisfied between the elastic responses to the unit step dislocation, H(x) : ZH(z), 
ZH(z), and those to the unit impulse dislocation, 8(x): Z8 (z), Z8 (z). 

Zo(z) = dZH(z) = dZH(z) 
dx dz 

(G15a) 

(G15b) 

Comparison of Eqs. (G14), (GlSa), and (GlSb) with Eqs. (G2), (G4a), and (G4) leads to the stress 
functions for the dislocation with displacement density d · 8(x). This nucleus of displacement may be 
construed as a "concentrated displacement". Noting that ZH(z) = -izo(z), these functions are written as 
follows: 

- d E'dl 
Z(z) = --Zo(z) = ---

!!,. 47r z 

(G16a) 

(G16b) 
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These functions serve as the Green's functions for dislocations of arbitrary shape. 
The distinct advantage of this method is that the desired displacements can be built up by putting together 

elementary "concentrated displacements" with no cracks to begin with, thus avoiding the interactions 
(couplings) among the solutions for individual dislocations. That is, these solutions can be directly 
superimposed; consequently, Westergaard stress functions are, in general, actually more readily obtained for 
dislocations than for cracks. 

y 

X 

-f(X) 

Fig. G6 

Let a dislocation displacement on the x-axis, D(x), defined by Eq. (Gl), be given by a piecewise 
continuous functionf(x) that is nonnegative2 in a region a:::; x:::; f3 and zero in regions x <a andx > (3, as 
shown in Fig. G6. That is, 

D(x) = 2f(x), 

(G17) 

D(x) = 0 X< a, X> fJ 

Then, using the Green's functions given by Eqs. (G16a) and (G16b), the Westergaard stress functions Z(z) 
and Z(z) are obtained by simple integrations. 

Z(z) = E' 1(3 f(x') 2 dx' 
21r a (z-x') 

Again, note that either Z(z) or Z(z) ofEq. (G18) is also derived directly from the other. 

2 This requirement is only for physical purposes. 

(G18a) 

(G18b) 
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y 

-f1(x) fn{X) 

"'s p3 (3 .. - ---- "'8 ~ 
-~<x) Clt4 -f./K) -fn(x) 

X 

Fig. G7 

When the dislocation displacement, D ( x), consists of more than one piecewise continuous functions, 2fi ( x), 
which are nonnegative in a; :::; x:::; {3; and zero in (3;_ 1 < x < a; and {3; < x < a;+t, as shown in Fig. G7, by 
simply applying the direct superposition of stress functions, we can write the stress functions as 

Z(z) = E' t 1!3, fi(x') dx' 

2Jri=l "' (z-x') 2 
(G19a) 

Z(z) =-E' t 1/3, fi(x') dx' 
2Jr i=l "' z -X I 

(G19b) 

Note that integrating Eq. (G18a) by parts we have its alternative form 

E' [f(x') 1/3 1!3 j' (x') '] Z(z) =- -- - --dx 
2Jr z-x' z-x' 

" " 
(G18a) 

wheref'(x) = df(x)jdx. The choice between Eqs. (G18a) and (G18a)' can be made on the simplicity of the 
integration. 

WESTERGAARD STRESS FUNCTIONS FOR SEVERAL 
DISLOCATION PROBLEMS 

Some examples are given to illustrate the possibilities for easily obtaining solutions. 

1. Periodically located identical dislocations whose displacements densities are given by d · 8 (x ± 2kb ), 
k = 0, ... , oo (Fig. GS). 

Applying the relations given by the first halves ofEqs. (G16a) and (G16b) to Eqs. (G13a) and (G13b), 
respectively, we readily have 

E'd(Jr 1rZ) 2 
Z(z) =- -cosec-

4Jr 2b 2b 
(G20a) 

- E'd ( 1r 1rz) Z(z)=- --cot-
47r 2b 2b 

(G20b) 



G.9 Westergaard Stress Functions for Dislocations and Cracks 555 

y 

Fig. G8 

These functions can also be obtained from the Green's functions, Eqs. (G16a) and (Gl6b), by the direct 
superposition 

E'd co 1 
Z(z) =- ~ 2 

47r k=-co (z- 2kb) 

- E'd co 1 
Z(z)=-- ~ --

47r k=-co z - 2kb 

with the aid of the following identity [or the relation Z(z) = J Z(z)dz] in addition to Eq. (G12a) 

(G12c) 

Eqs. (G20a) and (G20b) can serve as the Green's functions for periodically repeated dislocations with 
arbitrary shape. 

2a. Diamond-shaped dislocation (Fig. G9). 
f(x) is given by 

or = a(a -lxl) 

f(x) = 0 lxl> a 
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Point of separation 

Free surface 
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Using Eq. (G18a), we have the following Westergaard stress function: 

E'a i 
Z(z) = -47r- en 7(z_+_a--,-)7(z---a--,-) (G21a) 

and 
Z(z) = J Z(z)dz 

' (z z)z 
= E a en ----::7--::--"-------::--::-4 z+a z a 

7r (z+a) (z-a) 

(G21b) 

The following observation supports visualization of our intuition that we cannot always fill a crack with a 
rigid wedge of arbitrary shape without welding the surfaces together. 

The normal stress distribution, ay (x, 0), is calculated from Eq. (G21a) using Eq. (38) 

uy(x,O) = Re{Z(z)}y=O 

E'a i 
= 47r en (x + a)(x- a), lxl> a 

E'a i 
= 47!" en(a+x)(a-x)' lxl<a 

(G21a)' 

The stress distribution given by Eq. (G21a)' is plotted in Fig. G9b. As readily seen, to maintain the 
diamond shape we have to apply the tensile surface stress over the region a/v'l < x <a. This implies that 
when a diamond-shaped wedge is inserted into a crack with equal length, the contact between the surfaces is 
lost and free surfaces are formed near the tips of the wedge (see Fig. G9c). The location of the point of 
separation is, however, not known beforehand. The method for determining the position of this point is 
discussed subsequently. 

2b. Dislocation shown in Fig. GlO. 

I!<:;= ----<~-LI --~~==~~~~-----a. - c c Cl 

A/2. 
a-c 

Fig. G10 

f(x) = /::;,/2 = a( a- c) lxl::; c 

X 

f(x) = a( a- lxl) c ::; lxl ::; a 

f(x) = 0 lxl > a 
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By direct superpositions of Eqs. (G21a) and (G2lb), we immediately have the following solutions: 

Z(z) =E'a £n (z+c)(z-c) 
4Jr (z + a)(z- a) 

z+c z-c 
- E'a (z+c) (z-c) 
Z ( z) = - £n -'------'--,--,--'------'----,-

47r (z+a)z+a(z-a)z-a 

3a. Periodically located diamond-shaped dislocations (Fig. Gll). 

y 

Fig. G11 

01. = Ao/2 
d 

By superposition ofEq. (G21a), Z(z) is given by 

E'a 00 

Z(z) =- ~ F(z-2kb) 
47r k=-00 

where 

2 

F(z) £n ..,-------.,.=..,--------,-
= (z+a)(z-a) 

Using the identity given by Eq. (Gl2b), we have Z(z) in the following simple closed form: 

E'a (sin;%f 
Z ( z) = - £n -.....,...-''----:-="---,------.,. 

4Jr . 1r(z+a) . 1r(z-a) 
sm 2b sm 2b 

(G22a) 

(G22b) 

(G23) 
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3b. Periodic dislocations shown in Fig. Gl2. 

Directly from Eq. (G23), we have 

or 

Fig. G12 

. 1r(z+c) . 1r(z-c) 
E 1 a Sill ----v;- Sill ----v;-

Z(z) = -47r- fn -.-1r-(,.=z+""---,a)-.-1r-(,.=z-""a--,-) 
Sill ----v;- Sill ----v;-

E'a 
=-fn 

47r 

( . 7rZ)2 ( . 7rC)2 
Sill 2Jj - Sill 2Jj 

( . 7rZ)2 ( . Jra)2 
Slll2b - Slll2b 

4. Elliptical-shaped dislocation (Fig. G13). 

y.l yz. -
a:z. + b1 - 1 

b 

-<1. X 

-b 

Fig. G13 

f(x) for this case is given by 

f(x) = bVl- Gf 1x1:::: a 

f(x) = 0 lxl> a 

(G24) 
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We can immediately write the stress functions Z(z) and Z(z) for this problem by comparison with the well
known solution of the Griffith crack under uniform internal pressure as follows [see Eq. (71)]. 

E'b [ 1 l Z(z) =- -1 
2a VI- (%)2 

(G2Sa) 

- E'b [ rz-2. ] Z(z) =~ yz- -a- -z (G2Sb) 

In fact, Eqs. (G25a) and (G25b) are obtained by the direct application of Eqs. (G18a) and (G18b), 
respectively. 

The solution shows that, when an internal crack in an infinite plate is filled with a smooth rigid wedge with 
elliptical shape, the traction between the surfaces becomes uniform compression. If uniform remote tensile 
stress, E'b/2a, is applied, these surfaces become traction free. 

5. Parabolic-shaped dislocation (Fig. G14). 

X 

Fig. G14 

f(x) for this example is 

f(x) = aFx x::; 0 

f(x) = 0 x > 0 

Again we can immediately expect the functions Z(z) and Z(z) to be identical to those for a semi-infinite 
crack with stress-free surfaces along the negative x-axis (see page 3.1). In fact, by Eq. (G18a), 

Z(z)- E'ajo ~ dx'- E'aloo ,jE, d~ 
- 27r -co (z-x') 2 - 27r o (z+~)2 

E'a 1 
(G26a) 

4vz 
and 

J E'a 
Z(z) = Z(z) dz = l ,fi (G26b) 
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Eq. (G26) gives the elastic field near the tip of a crack with free surfaces on x < 0, y = 0, where the remote 
loads cause the stress intensity factor K = yfirE' a/ (2v'2), which is readily obtained by comparing (G26a) 
with Z(z) = K/v'2ifZ on page 3.1. The crack-tip field for the preceding example (4), since 
K = (E'bj2a) y1ra, corresponds to the case where a= v'2 bj..j(i. 

6. A Dislocation whose shape is given by Eq. (G27) (Fig. G15). 

-a. 

Fig. G15 

f(x) = ~ { 1- @2
}", 

f(x) = 0 

By Eq. (G18a), Z(z) can be obtained from the following integral: 

z(z) = E'oo ja { 1- (~):}" dx' 

47r -a (z- x') 

After some manipulations, we arrive at 

lxl::; a 

lxl >a 

E'8o r(a+ 1) ( 1 (-az) 2 ) 
Z(z) = 2 r:;;. ( 1)2F1 1, 2-a; 2; 

yJrar a+z 

(G27) 

(G28) 

where 2F 1 (a, (3; "(; z) is the usual notation for the hypergeometric series. 
Note that special cases a = 0 and a = ~ correspond to the cases of Fig. G2 and Fig. G13, respectively. 
Sneddon (1969a) solved this problem as an example of his general solution which was derived by the 

method of Fourier transforms and dual integral equations. His interpretation of the problem is to find the 
surface stress distribution that is necessary to maintain the Griffith crack in the prescribed shape. The general 
solution was given in the form of two relatively simple integrations. The present method requires only one 
simple integral and seems to provide a simpler and more direct approach to the problem. 

The stress distribution, lTy(x, 0), calculated from these stress functions on the dislocations (i.e., the 
displacement-prescribed segments) is interpreted as the surface stress necessary to maintain the crack surfaces 
in the prescribed shape. Therefore, when this stress is compressive, that is, O"y(x, 0) < 0, over the entire 
portion of the crack, the problem is equivalent to the insertion of a smooth rigid wedge with prescribed shape 
into the crack. Otherwise, the stress distribution is regarded as the traction between the surfaces that would 
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result if the surfaces of the wedge and crack are welded together. When the surfaces are not welded, free 
surfaces form over certain portions of the crack, as discussed in the example (4) above (Fig. G9). The 
positions of the points of separation of the surfaces are determined by the method discussed in the following 
sections. 

COMBINED PROBLEMS OF DISLOCATIONS AND CRACKS 

When dislocations (or cracks with fully prescribed displacements) and cracks in the ordinary sense (cracks 
with prescribed surface stress distributions) are present collinearly on the x-axis, the Westergaard stress 
functions can be obtained relatively easily. The method is simply successive applications of the preceding 
method of dislocation analysis and the usual method of stress analysis of cracks. The procedure of the analysis 
is as follows. 

First, obtain the stress function for the dislocation only, Zn (z), assuming that cracks are not present, by use 
of the method described in the preceding sections. The normal stress distribution on the x-axis due to the 
dislocation, D"yD (x, 0), is calculated by Eq. (38) 

(G29) 

This is the "crack-absent" stress distribution to be removed along the cracks. Thus the problem is now 
reduced to the ordinary crack problem where the crack surfaces are assumed to be stress free. Green's 
functions for the Westergaard stress function, Za(z,x'), are available in this handbook for various crack 
geometries. The stress function for the crack, Zc(z), under the stress given by Eq. (G29), is calculated by the 
integral 

Zc(z) = [ uyn(x',O)Za(z,x')dx' (G30) 

where the integral fc ( .. . )dx' is a defmite integral over the entire portion of the crack. Since the stress 
function, Zc(z), generates no vertical displacement, v(x, 0), outside the crack, the prescribed shape of 
dislocation is maintained. Thus the combined stress function for the dislocation and the crack is obtained by 
the superposition of Zn(z) and Zc(z), that is, 

Z(z) = Zn(z) + Zc(z) (G31) 

As discussed earlier, the normal stress, O"y(x, 0), on the dislocations, calculated from the total stress 
function Z(z), Eq. (G31), is the stress distribution necessary to maintain the dislocations in the prescribed 
shapes. When this stress is compressive over the entire segments of dislocations, the problem is equivalent to 
plugging the thin rigid wedges with the same prescribed shapes into the corresponding cracks. When the stress 
is tensile over any portion of the segments, the equivalency is retained only if surfaces of the cracks and the 
wedges are welded. Otherwise, the contact between the surfaces will be lost and free surfaces will form. Then, 
the portions of the free surface should be treated as the usual stress-prescribed cracks, that is, Zc(z) should 
incorporate the analysis of these portions while Zn (z) remains unchanged. The points of separation of the 
surfaces, however, are generally not known beforehand. The method for determining the positions of the 
separation points is also discussed subsequently. 

In the subsequent discussion, the method is applied to several very simple examples to illustrate the 
possibilities for obtaining the stress function for more complicated problems without great mathematical 
difficulties. 
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A CRACK PARTIALLY FILLED WITH A RIGID WEDGE 

As a simple illustrative problem of this type, consider a semi-infinite, thin rigid wedge with uniform 
thickness, b., inserted into a semi-infinite crack leaving free surfaces of length 2a ahead of the wedge, as 
shown in Fig. G16. Note that Fig. G16 is a limiting case of Fig. G23. For convenience, we take the origin of 
the coordinates at the center of the stress-free portion. 

Fig. G16 

When there is no free surface ahead of the wedge (or when the crack is filled with the wedge), the stress 
function is given by Eq. (G4a). That is, the stress function, Zn(z), in this case is 

E'~ 1 
Zn(z)=--

47r z+ a 

The corresponding crack-absent stress distribution, O'yn(x, 0), is calculated from Eq. (G29) 

E'~ 1 
CTyn(x, 0) = Re{Zn(z)} _0 = - 4---

Y- 1r x+a 

The Green's function, Z0 (z,x'), for a crack in an infinite plane is well known as (see page 5.10) 

1 yi -x'2 

Z0 (z,x') = ----'-----=== 
7r (z- x')Vi - i 

(G32) 

(G33) 

(G34) 

The additional stress function due to crack, Zc(z), is calculated by performing the integration ofEq. (G30) 

Zc(z) = 1: CTyn(x', O)Za(z,x')dx' 

E'~ 1 la 1 (;6-x' 1 

= 4 2 ~ z-x' a+x'dx 7r Vz-a -a 

The final expression of Zc(z) has the following simple form. 

E' ~ { 1 1 } 
Zc(z) = 47r Ji -i- z+a (G35) 
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The total stress function of the problem is then, by Eq. (G31), written as 

and 

E'~ 1 
Z(z) =Zn(z) +Zc(z) = ~ 47r 2 2 z -a 

- J E'~ -1 z Z(z) = Z(z)dz =-cosh -
47r a 

G.18 

(G36a) 

(G36b) 

These functions are among the few Westergaard functions known for displacement-prescribed crack 
problems. 

The stress intensity factor, K±a' at the ends of the free surface, x = ±a, is directly obtained from Eq. 
(G36a) as 

Similarly, 

K+a = lim {J21r(x-a) a-y(x,o)} 
x--+a+O 

= lim [J21r(x- a) Re{Z(z)}y~o] 
x--+a+O 

E'~ 
K-a =- 4y'7m 

(G37a) 

(G37b) 

The profile of the free surface (see Fig. G16), v(x, 0); lxl :::; a, is calculated from Eq. (G36b) by the formula 
given by Eq. (G3). 

v(x, 0) =}:, Im{Z(z)} _ 
lxi:Sa E y-O 

~ -IX 

(G38) 

=-cos -
27r a 

Eqs. (G37) and (G38) agree with the known solution (Barenblatt, 1962) (see page 3.11 and the dashed curve 
in Fig. G24). 

In the preceding example, we discussed the case where the position of the point of separation of the crack 
surface and the wedge is defmite and known beforehand. For the case where the position of the separating 
point is not known, we can still apply the present method by simply imposing an additional condition at the 
point of separation. Some discussion on a problem of this type is found in Barenblatt's review (Barenblatt, 
1962). The following simple examples illustrate the applicability of the method. 

Consider a semi-infmite crack whose elastic field is characterized by the stress intensity factor Kappt· When 
a thin, smooth, rigid wedge with uniform thickness, ~' is inserted into the crack up to the leading edge, the 
contact between the crack surface and the wedge will occur over a portion, £, near the crack tip, as shown in 
Fig. G17, and the surfaces will separate outside this portion since the crack opening profile is parabolic before 
the insertion of the wedge. 
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Fig. G17 

To apply the present method to this example, we interpret the problem in the following way. First, consider 
a semi-infinite crack filled with the wedge. We apply a remote external load that would generate the stress 
intensity factor Kappt if the wedge is not inserted. The separation of the contact surfaces will occur at a certain 
distance,£, from the tip. For convenience, the coordinates are taken as shown in Fig. G17. Zn (z) and ayn (x, 0) 
for this case are 

and 

E 1 ~ 1 
ZD(z)=--

4Jr z- e 

E 1 ~ 1 
ayD(x,O) =----" 

47r X-<-

Za(z,x 1 ) for a semi-infinite crack is known as (see page 3.6) 

Thus Zc(z) is calculated as 

1 1 ff-x1 1 ZG(z,x) =- -·-
Jr z z-x 1 

E 1 ~ 1 1° 1 ~ I E 1 ~ 1 100 1 p I Zc(z)=--- --·--dx =--- --·--dx 
47r2 Vz -ooxl -e z-x~ 47r2 Vz o f+xl z+xl 

Note that the function 
E 1 ~ 1 ~ ZD(z) +Zc(z) =--" -

4Jr Z-<- Z 

(G39) 

(G40) 

(G41) 

(G42) 

(G43) 

is the solution to the problem where the portion ofthe wedge that is locatedx < 0 is removed from the crack 
(Fig. G18). This solution is also obtained using the finite wedge which fills a single crack, as follows (Fig. 
G19). For this case (see Eq. (G6a)) 

ZD(z)=- ---E 1~( 1 1) 
47r z-e z 

(G44) 

aD(x,O) =-- ----E 1~( 1 1) 
Y 47r x-£ X 

(G45) 
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Fig. G18 

remove y 
ay(x,o), >C<O 

\----:~~ 
Fig. G19 

Za(z,x') is the same as Eq. (G41). Thus 

0 

Zc(z) = loo ayD(x',o)zG(z,x')dx 

E' /::;,. 1 re 
= 47r z-fv;-ZD(z) 

E't:;. 1 ~ ZD(z)+Zc(z)=--n -
47r z-.c z 

Eq. (G46) agrees with Eq. (G43). 

G.20 

)( 

(G46) 

Since we have an additional crack-stress field, Zc appt (z), due to applied external load, which is given by 
(see page 3.1) 

Kappl 
Zcappl(z) = y"27[Z (G47) 
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the total stress function, Z(z), is given by 

Z(z) = ZD(z) +Zc(z) +Zcappl(z) 

E 1 .6. 1 {£ Kappl 
= 47r z - c v ; + y"21;:Z 

(G48) 

The unknown length of contact, C, is obtained in terms of~ and Kappl from the boundary condition at the point 
of separation. The condition is that the separation of surfaces occurs smoothly, or that the stress singularity at 
the separation point, Kx=o, is zero. That is, from Eq. (G48), 

or 

Eq. (G48) is then simplified as 

or 

E'.6. 
- ~+Kappl =0 

2v27r£ 

1 (E'.6.) 2 
£---

87r Kappl 

E'.6. 1 {z 
Z(z) = 47r z-cV£ 

Kappl Vz 
.Jiirz- C 

The function Z(z) = J Z(z)dz is also written in a simple form as 

Z(z)=E'.6.{ {:+~Cn(VZT£- 1)} 
21r V£ 2 VZ!£+ 1 

(G49) 

(GSO) 

(GSl) 

The stress distribution, uy(x, 0), and the displacement, v(x, 0), along the x-axis are calculated from Eqs. 
(G50) and (G51), respectively, as 

x<O 

(GS2) 
x2:0 

x::;o 

(GS3) 

x>C 
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we~e. inserted 

G.22 

Fig. G20. Crack profile and stress distribution given by Eqs. (G53) and (G52), respectively. 

The stress distribution and displacement given by Eqs. (G52) and (G53) are shown in Fig. G20, where the 
stress distribution and crack profile due to the applied force (Kappl) are also shown by dashed lines for 
comparison. 

It is noted from Eq. (G49) that the contact between the wedge and the crack surfaces always exists (C > 0), 
as expected, regardless of the magnitude of applied load. 

As another simple example of this type, we again consider the situation given by Fig. G16. In addition to 
the insertion of the wedge, the crack is now assumed to be subjected to a remote uniform compressive stress, 
p, as shown in Fig. G21. 
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Fig. G21 

The stress function is readily obtained by the superposition ofEq. (G36) and the well-known solution for 
the Griffith crack (page 5.1). Thus the total stress functions are written as 

E'!::;. 1 
Z(z)-- 47r ~ 

Vz -a 

p 

- E'/::;. -lZ ~ 
Z(z) =--cosh --PV z- -a-

47r a 

The stress intensity factors at x = ±a are 

E'!::;. 
K+a = r:;;;; - p,fim 

4y7ra 

E'/::;. 
K-a = ---- p,fim 

4,fim 

While K-a < 0 always holds, from Eq. (G55a), 

E'/::;. 
K+a::; 0 when p 2:Po = --

47ra 

(GS4a) 

(GS4b) 

(GSSa) 

(GSSb) 

(GS6) 

Therefore, Eqs. (G54) and (G55) are valid as they are whenp:::; p 0 = E' ~/(4na). When the compressive 
stress p exceeds p 0 , the crack closure will occur over a certain length, £, from the right end of the crack, as 
shown in Fig. G22b. The length,£, and the resulting elastic field are easily obtained by imposing the condition 
for smooth contact between the closed surfaces. 
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a. 

b. 

E~~ 
p=po =--

47ra 

P >Po 

I a 
E~~ 

47rp 

G.24 

'I 

0. 

K = o 
-+a.' 

Fig. G22 

We first examine the situation shown in Fig. G22a, where p = p0 . We can immediately write stress 
functions and K ±a from Eqs. (G54) and (G55). 

(G57a) 

_ ( -lz ~(z)2 
) Z(z) = p 0 a cosh -;;;- y \-;;;) -1 (GS7b) 

(G58a) 

(G58b) 

Now the complete solution for p > p 0 (Fig. G22b) can be expressed in the same form simply replacing z, a 
and p0 by z 1 , a 1 and p, respectively, where z 1 = z + R-j 2, a 1 = E 111/ ( 4np ), and C = 2( a - a 1 ). Thus 

(GS9a) 
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where 

- 1 E 1 ~ -I z 1 z 1 
Z(z ) = 47r cosh -;?- (-;;;) -1 ( ~) 

E~~ 
p=-

4Jra1 

The length of closure, £, is given by 

£=2(a-a) =2 a-- =- ---1 ( E 1 ~) E 1 ~ ( 1 1) 
47rp 47r Po P 

(G59b) 

(G60a) 

(G60b) 

(G61) 

When an internal pressure, p, is applied inside the crack instead of a remote compression, it is readily shown 
that the contact between the surfaces along x < -a is lost completely when the internal pressure p exceeds 
Po = E 1 ~/(47ra). 

CRACKS COLLINEARLY LOCATED WITH DISLOCATIONS 
(Combinations of Displacement-Specified Cracks and Stress-Specified Cracks) 

~ 
y 

wzwufum 
Lb 

X 

Fig. G23 

In the very simple example shown in Fig. G23, a uniform dislocation with thickness ~ is located along 
x:::; -b, y = 0 and a single crack is located at lxl :::; a, y = 0. This situation is realized when a semi-infinite 
crack located at x:::; -b, y = 0 is filled with a thin, smooth, rigid wedge with uniform thickness~' leaving 
another crack stress free. 



572 Appendix G 

Zn(z) for this case is given, again from Eq. (G4a), by 

E 111 1 
Zn(z)=--

41!" z+b 

Then O"yn(x, 0) is readily given by 

E 111 1 
O"yn (x, 0) = ----b 

47r x+ 

Since the Green's function, Z0 (z,x 1 ), given by Eq. (G34) is again valid, 

I a V 2 12 1 ( 1 ) ( 1) 1 E !::J. 1 1 a -X 1 Zc(z) = ayn x ,0 ZG z,x dx = 2 ~ ( _ 1)( 1 -b)dx 
C 41l"Vz-a-aZXX 

Performing the integration, we can obtain the following final expression for Zc(z): 

E 1!1 1 ( ~) E 1!1 1 
Zc(z) = 41!" Ji -i 1- z+b - 41!" z+b 

Thus, the total stress function is 

E 1!1 1 ( ~) Z(z) = Zn(z) +Zc(z) = ~ 1- b 
41!" vi-i z+ 

and 

- J E 1 1::!. { -1 z -1 i + bz} Z(z) = Z(z)dz =- cosh -- i cos -(--) 
41!" a ab+z 

The stress intensity factors at x = ±a are 

E 1!1 ( Fa) K+a = 4 y"ifa 1-y~ 

and 

EI!::J.( ~) 
K-a =- 4y"ifa 1-v~ 

G.26 

(G62) 

(G63) 

(G64) 

(G65a) 

(G65b) 

(G66a) 

(G66b) 

When a= b, Eq. (G65) is reduced to Eq. (G36), that is, the solution for the situation of Fig. G16. 
Therefore, it is seems interesting to examine how the profile of the crack changes when the ratio a I b varies. 

The profile is calculated from Eq. (G65b) using Eq. (G3). 

2 - 1::!. { -1 x -1 i + bx} v(x,0)= 1 Im{Z(z)} =-cos--cos (b) E y~o 21r a a +x 
(G67) 

The shape of the crack given by Eq. (G67) is shown in Fig. G24 for various values of a I b while the 
distance b is fixed for convenience. 
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Fig. G24 

When a is very small compared with b, the elastic field near the crack should correspond to a Griffith crack 
under uniform tension uy(O, 0) = E' !}.j(47rb). In fact, when a;b « 1 and Z/b « 1, Eq. (G65a) is reduced to 
the following well-known solution: 

CTy(O,O) 

VI- (~)2 
(G68) 

It should be noted that the solution, Eq. (G65), is very useful in constructing solutions for various 
problems associated with a single stress-free (or stress-specified) crack and dislocations with uniform 
thickness. It is possible to derive solutions by superposition of Eq. (G65) and the limiting procedure without 
performing the integration ofEq. (G30). Westergaard functions, Z(z), for a few simple examples, which are 
directly obtained from Eq. (G65), are illustrated next. 

EXAMPLES OF WESTERGAARD FUNCTIONS ASSOCIATED WITH 
UNIFORM DISLOCATIONS AND A STRESS- FREE CRACK 

a. Two opposing cracks, one of which is filled with an infinite uniform wedge, Fig. G25(a). 

A 

Fig. G25(a} 

y 

E' !l Vc 
Z(z) = -47r-..,.-(z_+...!.c.,-)Fz-:=-=z (G69) 
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b. A fmite crack filled with uniform wedge and a semi-infinite crack, Fig. G25(b). 

X 

Fig. G25(b) 

Z(z) = E'~_l_ ( ye _ Vb) 
47r Fz z+c z+b 

G.28 

(G70) 

c. A semi-infinite crack, the tip of which is filled with a uniform wedge with finite length, Fig. G25(c). 

A ly 
rLvzzzz:zzzzzzZ2pzzrf=::::=~;;;;ss- x 

~b~ 
Fig. G25(c) 

(G71) 

See Eq. (G43) or (G46). 

d. Two fmite cracks, one of which is filled with a uniform wedge, Fig. G25( d). 

y 

Z(z) = E ~ 1 V c -a _ V b -a (Gn) I (~ ~) 
47r y'} -i z+c z+b 

Fig. G25(d) 
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e. A fmite crack partially filled with a uniform wedge at one end, Fig. G25(e). 

y 

a. a 

Fig. G25(e) 

Z(z) = E' ~-~- Jc2 - i 
4Jr z+c i -i 

f. A finite crack partially filled with two identical uniform wedges at both ends, Fig. G25(f). 

y 

Z(z)=E'~_z_~ 
4 2 2 ~ 

7r z -c Vz -a 

Fig. G25(f) 

g. A finite crack filled with a uniform wedge subjected to remote tension, Fig. G25(g). 

to-t E'D. 

t t t When a ::; -2-, 
1ra 

y e~o } 
surft:tces Z(z) =E'~-a-+0' 

27r i-i 

X 

See Eq. (G6a). 

When a> E'D. 
2na 

~ ' '<r' 
~ e~aJI- ( E'f> )' } 2JrO'a 

Z(z) = O'~Vi- £2 

z -a 

(G73) 

(G74) 

(G75) 

(G76) 

Fig. G25(g) 
where 2£ is the length of separated (free) surfaces. 
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THE GREEN'S FUNCTION FOR A SINGLE STRESS- FREE CRACK AND 
DISLOCATIONS WITH ARBITRARY SHAPE 

G.30 

Solutions are easily obtained from Eq. (G65) by superposition for many other problems in which there is 
only one stress-free crack or only one stress-free portion along the x-axis, such as shown in Fig. G25, (c), (e), 
and (f). This suggests the use ofEq. (G65) as the Green's function for such problems. When the same portion 
is subjected to a specified stress instead of stress free, the ordinary method of crack stress analysis is separately 
applied. Then the result must be superimposed on the solution obtained under the stress-free condition. Note 
that the cases illustrated by Fig. G25, (c), (e), and (f) are simply treated as special cases of the single stress
free crack problem. Therefore, we address only the Green's function for the problem associated with a single 
stress-free crack and dislocations (or cracks) with arbitrarily prescribed shape. 

For convenience, replacing b by -x 1 we rewrite Eq. (G65a) as 

1 £ 1/::;,. 1 ( vx 12 -a2) Zo (z,x ) = ~ 1 - 1 47r 2 2 z- X z -a 

Recalling the previous discussion leading to Eq. (G16), the Green's function is readily derived as 

Za(z,x 1) =lim {Zo(z,x 1) -Zo(z,x1 -c-)} 
e--+0 
l'>e=d 

that is, 

1 E 1d 1 d (Vx 12 - a2) Za z,x =-
( ) 47r ~dx1 z-x 1 

or 

Za(z,x 1) = _ E 1d 1 { x 1 1 +-'-y'_x_12_-....,a,-2 } 
47rJi-i Vxl2_iz-xl (z-xl)2 

Fig. G26 

(G77) 

(G78) 

(G79) 
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When symmetric vertical displacement, v(x, 0), is specified along the x-axis, except in the region lxl:::; a 
where a stress-free condition is given (Fig. G26), Z(z) is obtained by the following integration. Note that in 
the region lxl:::; a we can simply assume v(x, 0) = 0. 

Z(z) = ~ 1: v(x 1
, O)Za (z,x 1)dx 1 (G80) 

or using the same notations used in Fig. G7 and Eq. (G19) 

1 n 1{3, 
Z(z) =diE "' fi(x 1)Za(z,x 1)dx 1 (G81) 

When Eq. (G79) is used for ZG(z,x 1), Eq. (GSO) becomes 

El 1 1oo zxl -a2 
Z(z) = -- v(x 1 0) · dx 1 

47rJi -i -oo ' (z-x 1) 2 Vx 12 -i 
(G82) 

and when Eq. (G78) is used, Eq. (GSO) is integrated by parts, 

I oo (V' 12 2 ) E 1 1 d x -a 1 

Z(z) = --4 ~1 v(x ,O)dx 1 1 dx 
7f 2 2 _ 00 z- X 

z -a 

1 [ v 12 2 
00 00 v 12 2 l £ 1 ( 1 ) X -a 1 1 ( 1 ) X -a 1 =- vxO - vxO dx 

4~ ' I ' I 7f 2 2 z - X -oo Z - X 
z -a -oo 

(G83) 

where v 1 (x 1 , 0) = iz,v(x 1 , 0). The choice between Eqs. (G82) and (G83) can be made for simplicity of 
integration. Note that this method can be used even when (3; = -a and/or a1 = a in Fig. G26. 

Fig. G27 

When this stress-free crack is a semi-infinite crack located along the positive x-axis (Fig. G27), in a similar 
manner, starting with Eq. (G69), or as a limiting case ofthe above, the Green's function is obtained as follows. 
Z0 (z, x 1 ) in this case is 

I E 111 ~ 
Zo(z,x) = 4 ( 1)Fz 

7r z- x -z 
(G84) 
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The Green's function is 

or 

Za(z,x 1
) = ~~~ {Zo (z,x 1

)} 

_E 1d_1 __ 1 (F?) 
- 4Jr Fzdx 1 z- x 1 

E 1d 1 {1 1 Fi' } 
= -~ Fz 2Fi'(z-x 1)- (z-x 1 ) 2 

E 1d 1 z+x 1 

-~ Fz. (z-x 1 ) 2 Fz 

G.32 

(GSS) 

(G86) 

Then, Z(z) for the situation shown in Fig. G27, again using the same notation, is given by the integral 

0 

Z(z) = ~ 1
00 

v(x 1
, O)Za (z,x 1)dx 1 (G87) 

or 

1 n 1{3, 
Z(z) =diE a, fi(x 1)Za(z,x 1)dx 1 (G88) 

Using Eq. (G86) 

E 1 1 1° z+x 1 

Z(z)=--4 ~ v(x 1 ,0)· 2 dx 1 

Jry-z -oo (z-x 1 ) FX' (G89) 

or using Eq. (G85), 

£ 1 1 10 1 d (F?) 1 Z(z) =-.~ v(x ,o)dx 1 --1 dx 
47r y -z _00 z -X 

=E 1 -1-[v(x 1 ,0)~~ 0 -1° v 1 (x 1 ,0)~dx 1] 47r Fz Z -X _ 00 _ 00 Z -X 

(G90) 

where v1 (x 1 , 0) = £, v (x 1 , 0). 
The choice between Eqs. (G89) and (G90) is again based on simplicity of integration. This method applies 

to a special case of f3n = 0 in Fig. G27. 
The method discussed in this section combines the two integrals, Eq. (G18) or (G19) and Eq. (G30), into a 

single integral. Equation (G18) or (G19) is needed to calculate lTy(x, 0), which is then used in Eq. (G30). 
Thus the general method given by Eq. (G30) was further simplified for problems involving a single stress-free 
crack and cracks or dislocations with arbitrary shape. 

The method is easily extended to problems where there are more than one stress-specified cracks, along 
with cracks or dislocations with arbitrarily specified shape. 
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SUMMARY 

This appendix presents a simple method for obtaining the Westergaard stress function for dislocations and 
cracks. 

First, problems associated with dislocations with uniform height (or cracks with uniform displacement) 
were discussed. Then, to extend the method's application to dislocations (or cracks) with arbitrarily prescribed 
shape, the Green's function was obtained. Thus no more than integrations were required to obtain the 
Westergaard stress function. Examples of Z(z) and Z(z) for various dislocations were given. 

The method was then further extended to problems with a combination of displacement-specified cracks (or 
dislocations) and stress-specified cracks. The general approach was presented and its applications to a few 
problems were discussed in detail. Many examples of Z(z) were compiled. 

Finally, the Green's functions for problems involving both displacement-specified and stress-specified 
cracks were established for a few simple configurations, further simplifying the general method. 

The method presented in this appendix requires only integrations, and thus provides a simple way of 
treating problems associated with collinear dislocations and cracks. 





APPENDIX H 

THE PLASTIC ZONE INSTABILITY 

CONCEPT APPLIED TO ANALYSIS 

OF PRESSURE VESSEL FAILURE1 

This appendix reviews the plastic zone instability concept and refmes the procedures for determining the 
conditions for instability. The plastic zone instability failure criterion is applied to several crack configurations 
in a specific thin-walled cylindrical pressure vessel with semi-spherical end caps. The cracks analyzed are a 
longitudinal and a circumferential through-wall cracks in a cylindrical shell, and a through-wall crack in a 
spherical shell. The results predict the possibility that for ductile materials in certain combinations of 
geometry and loading the failure controlled by the plastic zone instability may precede the failure controlled 
by the plastic collapse load. Perhaps the results suggest the necessity, in the presence of cracks, for 
consideration of the plastic zone instability along with the failure criterion based on the plastic limit load. 

INTRODUCTION 

In the evaluation of mechanical integrity of pressure vessels, the stability analysis of through-wall cracks is 
documented in various international sources 2 . In these sources, the dual approach for the following two 
conditions is generally regarded as reasonable. 

1. Avoidance of conditions for unstable running crack growth 
2. Avoidance of conditions for unrestricted plastic flow (or for plastic collapse) 

The plastic zone instability analysis discussed in this appendix addresses the second condition. 
The concept of the plastic zone instability (PZI) was proposed by Vazquez in 1971 (Vazquez, 1971), but it 

has not received much attention. It seems that the only extensive application of this method is found in the 
work of Tada and Paris (Tada, 1983c). Some of the results obtained in Tada (1983c) are included in this 
discussion. 

The PZI concept is based on the plastic zone size (ry) corrected linear-elastic fracture mechanics (LEFM) 
analysis, and therefore only LEFM solutions are required. In what follows, the LEFM solutions are presented 
first for the crack configurations of interest for convenience of subsequent discussions. Then the ry-correction 

1 Tada 1996. 

2 For example: British Standards Institute PD 64-93-91; U.K. Central Electricity Generating Board R-6; International Insitute 
of Welding llS-SST 1157-90; American Petroleum Institute RPS79; and Materials Properites Council (USA), Fitness for 
Service Report. 

581 
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method and the PZI concept are described in detail. The PZI analysis is made for cracks in a specific pressure 
vessel and the results are compared with those obtained by formulas based on yield load or limit load 
solutions. 

LINEAR-ELASTIC SOLUTIONS 

The following stress intensity factor (K) formulas are taken directly from pages 33.6, 35.1, and 36.1. For 
through-wall cracks oflength, 2a, in pressure vessels of mean radius, R, and wall thickness, t, subjected to an 
internal pressure, p, K values are expressed in the following form using a function of a single, dimensionless 
geometric shell parameter A. 

K = a,fiW,F(>..) (Hl) 

where the parameter A is defined as 

(H2) 

and the definition of a and the expression of F(A) are given below for each crack configuration. 

a. For a longitudinal through-wall crack in a cylinder, 

liz 
F(>..)=(1+1.25>..2 ) 0::;>..::;1 

(H3) 

= 0.6 + 0.9).. 1 ::; ).. ::; 5 

b. For a circumferential through-wall crack in a cylinder, 

liz 
F(>..)=(1+0.3225>..2 ) 0::;>..::;1 (H4) 

= 0.9 + 0.25).. 1 ::; ).. ::; 5 

c. For a circumferential through-wall crack in a spherical shell, 

(HS) 

These formulas are presented here for subsequent use in the plastic zone instability analysis. 
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PLASTIC ZONE SIZE (ry) CORRECTION METHOD 

A localized yielding near the crack tip begins immediately with the load application because of the presence 
of stress singularity and causes deviation from the behavior based on the purely elastic analysis. Therefore, 
rigorously speaking, there is no linear portion in the load-displacement relation for a cracked body. 
Interestingly, as shown later, this nonlinearity manifests itself as the linear portion of the material J (or Q )
resistance curve prior to the actual extension of the crack. 

It is the plastic zone size (ry) correction method that is commonly used to account for the effect of such 
local yielding. The plastic zone size ry given in the form ofEq. (H7) with a= 2, was initially pointed out by 
Paris in 1957 (Paris, 1957), and subsequently theoretical grounds for the use of the ry-corrected effective 
crack size in LEFM analysis was provided by Irwin and Koskinen (Irwin, 1963), The method was developed 
for evaluating material toughness in small-scale yielding conditions where the yielding zone near the crack tip 
is well contained within the surrounding elastic field. 

In this analysis model, the actual crack size, a, in the elastic solution is replaced by the ry-corrected 
effective size; that is, the effective elastic solution is used. The effective crack size, aeff, is given by 

aeff =a+ ry (H6) 

where 

ry = 2_ (.£)2 
0:7f CTy 

(H7) 

uy is the yield strength of the material; the constant a is customarily taken as a = 2 (plane stress) or a = 6 
(plane strain) depending on the constraining conditions (triaxiality) near the crack tip. It is sometimes 
convenient to take a as a geometry-dependent constant to extend the range of applicability of the method 
(Tada, 1972a). 

Because K on the right-hand side of Eq. (H7) is a function of crack size, to obtain the plastic zone size 
adjustment, ry, in a consistent manner, an iterative procedure or a graphical method is required. When K is 
given in a function form, as is the case of the shell crack problems of interest, the graphical method is 
conveniently used on the principle of "a single curve and straight lines." 

The crack size is represented by the dimensionless parameter A defmed by Eq. (H2). For convenience, 
writing A = a;b with b = $!, the following are equivalent to Eqs. (H6) and (H7), respectively, 

where 

Ay _ ry __ 1 (.£) 
- b - a1rb CTy 

Substituting Eq. (H1) into Eq. (H9) forK, 

where 

s = CT juy 

Y(.>..) = .>..{F(.>..)}2 

(HS) 

2 

(H9) 

(HlO) 

(Hll) 
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For a graphical solution for the unknown, Aeff' it may be more convenient to write Eq. (HlO) in the 
following form in terms of Aeff eliminating A.y: 

1 2 
Aeff-).. =- · s · Y(>..eff) 

a 

or further, 

(H12) 

The form of Eq. (H12) allows a simple graphical solution for Aeff for any specified crack size parameter 
).. = )..0 and various load levels represented by s = CT / CTy . That is, Aeff is determined from the intersection 
points of the curve 

and a series of straight lines 

y = Y(>..) 

1 
y=g(>..;>..o,s) =a·2(>..->..o) 

s 

(H13) 

(H14) 

The method is schematically presented in Fig. H.l. The Aeff illustrated in the figure is Aeff = Aeff(A.0 , s2 ), 

corresponding to the given crack size )..0 and the load level s = s2 . 

PLASTIC ZONE INSTABILITY CONCEPT 

Before discussing this concept, let us make some useful observations regarding Fig. H.l. From Fig. H.l we 
see that the plastic zone size, ry = b)..y = ..jlfjA.y, increases as the load level, s = CTjCTy, increases until the 
straight line given by Eq. (H14) becomes the tangent to the curve y = Y(A.), Eq. (H13), at s =Stan· That is, 
the solution of the iterative equation, Eq. (H7), does not converge beyond this load level, s > Stan. The values 
of Ay and Aeff corresponding to s =Stan are also shown in Fig. H.l as (A.y )tan and (A.eff )tan, respectively, 
along with the corresponding slope ( 01/l )tan ofEq. (H14). Note that, although the point of tangency, A, may 
not be determined very accurately, the slope 01/st;n is determined accurately. It is interesting to note also that 
the point of tangency A is unique for a given crack size )..0 irrespective of the value of constant 01. In other 
words, although Stan depends on the value of 01, the slope of the tangent, ( 01/l )tan = 01/s~an, and the 
corresponding value of (A.y )tan are uniquely determined for each given crack size >..0 . 

Also noted is that Fig. H.l is an alternative form of Fig. H.2, which was used by Vazquez (1971) in his 
analysis of the plastic zone instability (PZI). Figure H.l was chosen for simplicity of graphical solution, 
where the load parameters= CT/CTY is separated from the function (A.y) to permit the use of a single curve and 
a series of straight lines instead of a series of curves and straight lines used in the method of Fig. H.2. 
However, since Eq. (H12) and Figure H.l are not designed for discussing the PZI concept, the alternative 
form, Eq. (H17), and the corresponding graphical interpretation, Fig. H.2, are more convenient for directly 
following the discussion by Vazquez. 2 

Eq. (H7) in terms of J( or 9) = KfE is 

1 E 
ry =--J 

27!' 2 
O'y 

where E is the Young's modulus. Let us introduce the normalized form of J, 
- J J 

J~ ("lb) ~ (";:") 

(HlS) 

(H16) 
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0 
II 

\1) 

y=YC.A) 

I 
I 

(.Ay>tcan- - --1 
I 
I 

----- --(A.efF}t4n ------1 
Fig. H.1. Graphical solution of Eq. (H12). 

and rewrite Eq. (HlS) or (Hll) as 

or 
(H17) 

where 

- 2 
J(>.., s) = ns Y(>..) (H18) 
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y 

s=O 

.,_. ____ A.o ·I 

(A.yhan .J 
~ff I 

I 
---- {~ff)tan ------t 

Fig. H.2. Schematic of plastic zone instability. 

In Fig. H.2, a series of curves y = ] (A, s) and a straight line y = em( A - Ao) are shown. The PZI concept 
is discussed on the basis of Fig. H.2, which is equivalent to Fig. H.l. 

The possibility of extending the ry-corrected LEFM approach to non-small-scale yielding situations was 
explored and some justifications were given by Tada (1983c, 1972a). Vazquez (1971) examined the static 
equilibrium between the plastic zone near the crack tip and the surrounding elastic field and proposed the 
concept of plastic zone instability (instability without crack growth). Detailed discussions on the mechanism 
and the physical interpretations of this concept are found in Vazquez (1971), and some similar considerations 
are also found in Tada (1972a). Vazquez's analysis may be summarized as follows. 
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Let us consider a crack extension resistance (R-D.a) curve and the interpretations of crack equilibrium and 
crack stability associated with it. It is noted that, as long as the crack does not extend ( D.a = 0 or D.aeff = ry ), 
the plastic zone extension resistance (R-ry) curve, Eq. (H15), represented in Fig. H.2 by the straight line, 
y =em(>.- >.0 ), constitutes the initial portion of the material resistance curve. Thus, when F(>.) in Eq. (H1) 
is a rapidly increasing function, as in the case of through-wall cracks in shells, two distinct types of instability 
behaviors may be expected depending on the material's capability of absorbing plastic deformation; that is, 
the instability controlled by crack propagation- fracture toughness instability, and the instability controlled by 
plastic zone development - plastic zone instability. 

It is observed from Fig. H.2 that there is an equilibrium plastic zone size at each load level determined by 
the intersection point ( AeJJ, Jeff) between the curve y = ](>., s) and the straight ry-line, y = em(>. - >.0 ), in 
the absence of crack extension. When the applied load level reaches s = Stan, the curve becomes tangent to the 
straight line at the point A and no further equilibrium plastic zone is determined. That is, for s > Stan the 
solution for the iterative equation, Eq. (H17), no longer converges. The interpretation of Vazquez is that for 
s > Stan the plastic zone can not maintain stable equilibrium with the surrounding elastic field. If this tangency 
occurs before an appreciable crack extension (or deviation of the resistance curve from the straight ry-line) 
takes place, the plastic zone becomes unstable and spreads across the body. This is referred to as the plastic 
zone instability. The load level at instability is given by s;nst =Stan· When unstable crack propagation 
precedes the PZI, the fracture toughness analysis is to be followed. Note that the only material property 
involved in the PZI analysis is the yield strength O'y. Therefore, the PZI analysis alone does not determine 
which mode of failure occurs first. 

Vazquez (1971) experimentally confirmed the prediction for existence of the PZI for a longitudinal 
through-wall crack in a pressurized cylinder in plane stress conditions (a= 2) and concluded that the PZI 
analysis provides a conservative estimate of failure conditions. 

ry AT PLASTIC ZONE INSTABILITY AND CONDITIONS FOR 
UNRESTRICTED PLASTIC FLOW 

As previously observed, the values of ry at the occurrence of plastic instability (ry) inst = (ry \an are 
uniquely determined by the geometry irrespective of the value of a. However, the values of ry at PZI do not 
generally represent the fully yielded conditions geometrically. The use of the LEFM analysis with the ry
adjusted effective crack size in such large-scale yielding conditions may seem unjustified. 

Vazquez (1971) suggested that the quantity ry may be regarded as an index representing the development 
of the plastic yield zone rather than the physical plastic zone size itself in large-scale yielding conditions. Then 
it may be reasonable to assume the correspondence between the conditions for plastic zone instability and the 
attainment of the conditions for umestricted plastic flow. 

Interestingly, such correspondence is what exactly occurs in a few extreme two-dimensional crack 
configurations with the interpretation ofry as the physical size of plastic zone. Referring to Fig. H.3, consider 
a few deeply cracked bodies where the sole dimension relevant to the analysis is b, that is, the net ligament 
size. For the tensile configurations, Fig. H.3, a and b, the ry at the plastic zone instability, (ry )tan, is given by 

(H.19) 
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(a) (b) 

2b b 

(C) 

Fig. H.3. ry at plastic zone instability for several extreme configurations. 
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and for the bending configuration, Fig. H.3c, it is given by 

(H.20) 

regardless of the value of a in Eq. (H7). These conditions are readily obtained algebraically by noting that the 
stress intensity factors for these configurations have the following forms. For the tension configurations, Fig. 
H.3, a and b, 

(H21) 

and for the bending configuration, Fig. H.3c, 

(H22) 

where B is the thickness of the plates. The values of proportionality constants, At and Ab, are found on pages 
2.6, 2.1, and 9.1. The values of At and Ab are immaterial for the validity of Eqs. (H19) and (H20). 

The use of the ry-adjusted effective LEFM solution may be reasonably extended to cover a wide range of 
elastic-plastic loading leading to the plastic zone instability. Some discussions on the use of the geometry
adjusted a are found in Tada (1983c) and Tada (1972a). 

APPLICATION TO A PRESSURE VESSEL 

The plastic zone instability analysis was applied to determine the conditions for unrestricted plastic flow for 
through-wall cracks in an actual pressure vessel for a chemical reactor made of a ferritic steel. Its actual 
dimensions are 

R = 125" (3160 mm) 
t = 2.52" (64 mm) for cylindrical part 
t = 1.26" (32 mm) for spherical end caps 

The iterative equation, Eq. (H7), was solved graphically (Fig. H.1) for the values of<J/<Jy at the plastic zone 
instability, that is, <Jj<Jy =Stan, for the three crack configurations listed in the section: Linear-Elastic 
Solutions. The functions F(>..) used here are Eqs. (H3), (H4), and (H5). The results are presented in Table 
H.1 in PZI colunms. A report for the Materials Properties Council (MPC) by Anderson (1993) gives 

(H23) 

for both circumferential cracks and cracks in spheres without limits on >... As observed from the comparison of 
Eq. (H23) with Eqs. (H4) and (H5), Eq. (H23) is an overestimate, especially for circumferential cracks. 
Therefore, the use of Eq. (H23) is not recommended here. 

In Table H.1, these results are contrasted with the results in plastic collapse load (PCL) colunms obtained 
through the following formulas of the critical stress levels, <Jj<JY' for umestricted plastic flow. These formulas 
were taken from the MPC report (Anderson, 1993). 
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a. Longitudinal through-wall cracks in cylinders 

(H24) 

where O" = PRft· 

b. Circumferential through-wall cracks in cylinders 

(} 
[ 

2sinB(cosB+sinB) l-1 

.!!..._ - ~ 1 Jr-B - + 2. 2(} . 2(} 
(]"y 7r 7r - (} - __§JJl_ - §l1L_ 

1[-(} 2 

(H25) 

where () = a;R, and O" =pRj (2t). This is the form found in MPC (Anderson, 1993), which is somewhat 
simplified to 

- (} [ sin2B + 1-cos2B l .!!..._ = _7r- 1 - 1[-(} 

(]"y 7r 1r - (} + 1 sin 2(} 
2 

(H25a) 

c. Through-wall cracks in spheres 

1+--8.A_2 l 
( cos B)2 

-1 

(H26) 

where again()= a;R and O" = pR/(2t). 

Table H.1. Conditions for Unrestricted Plastic Flow for Through-Wall Cracks in Pressure 
Vessels 

(Plastic Zone Instability vs. Plastic Collapse Load) 

Cylinder Longitudinal Cylinder Circumferential Sphere Spherical 
Crack ( u 1 uy) Crack ( u 1 uy) Crack ( u 1 uy) 

>- P.Z.I. P.C.L. P.Z.I. P.C.L. P.Z.I. P.C.L. 

0 V2 1.0 V2 1.0 V2 1.0 
0.25 .900 .954 1.07 .965 .878 .899 
0.50 .669 .845 .894 .932 .642 .730 
0.75 .523 .726 .764 .899 .494 .596 
1.0 .423 .620 .661 .866 .396 .494 
1.5 .314 .446 .605 .800 .279 .365 
2.0 .250 .368 .526 .737 .213 .285 
2.5 .206 .302 .460 .677 .170 .229 
3.0 .170 .255 .418 .619 .142 .191 

u =pR 
t 

u=pR 
2t 

u= pR 
2tsp 

The actual dimensions of the pressure vessel analyzed are R = 125" (3160 mm), t=2.52" (64 mm), and tsp = 1.26" (32mm). 
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DISCUSSIONS 

Some observations can be made from the results presented in Table H.l. 
The critical stress values U/uy for umestricted plastic flow predicted by the plastic zone instability analysis 

are generally lower than those predicted by the formulas based on the plastic collapse (the yield or limit) loads 
(Anderson, 1993) except for very small cracks. That is, the PZI results are more conservative for most crack 
sizes than those from Eqs. (H24) (H25), and (H26), recommended by MPC (Anderson, 1993) and other 
documents 2 . 

In MPC (Anderson, 1993), these formulas are assumed to be applicable to both cracks and grooves, and are 
claimed to be conservative. Such an approach, however, may not yield conservative results in the presence of 
cracks, as observed from the comparison. Consideration of the possibility of plastic zone instability may be 
necessary. 

As discussed earlier, the ry at PZI, (ry )tan, and, correspondingly, ( a;s 2 )tan, are uniquely determined for a 
given crack geometry. That is, the effect of a on u / uy at PZI, Stan, is proportional to yla; Stan ex yla. In other 
words, the plane stress situations (a = 2) yield the most conservative results. For the thin-walled shell 
analyzed here, the plane stress conditions are expected to prevail except perhaps for very short cracks. As long 
as the same flow stress is used for uy in both analyses, the results in Table H.1 are good for direct comparison 
in plane stress conditions. Also note that the values of a have the opposite effect on the plastic zone instability 
and the fracture toughness. 

The plastic zone instability analysis is based on ry-corrected effective linear-elastic fracture mechanics (and 
the material crack extension resistance curve). Therefore, PZI analysis requires only LEFM solutions. 
Accurate LEFM solutions are readily available for many crack configurations, in handbooks, such as this 
handbook, or are otherwise easily obtained. 

The methods for determining the progressive increases of ry leading to the conditions for PZI are described 
in sufficient detail so that these procedures can be easily followed in the analysis of other crack problems. 





APPENDIX I 

APPROXIMATIONS AND 

ENGINEERING ESTIMATES OF 

STRESS INTENSITY FACTORS 

The uses of stress intensity factor values in engineering applications of fracture mechanics do not require 
values computed with absolute precision. Often estimates within 5% or better are sufficient for the purpose, as 
loads and material properties are seldom known with great accuracy. Therefore, the techniques of developing 
approximations for stress intensity factors for applications are discussed here. The solutions and formulas 
found earlier in this handbook for idealized crack and body configurations are explored for estimating stress 
intensity factors for the nonideal configurations often confronted in applications. Intuitive methods for 
estimating the magnitude of errors in such estimates will be emphasized. In addition, methods of developing 
bounds on values will be discussed. Indeed, the art of developing useful stress intensity factor estimates with 
the intuitive tools of linear elasticity and "strength of materials" approximations can be developed with 
practice for many advantages in applications. 

DIMENSIONAL ANALYSIS AND OTHER ASPECTS OF STRESS 
INTENSITY FACTORS 

The dimensional nature of stress intensity factors, K, is defmed from their definition as expressed in the 
equation in Part I of this hardbook. All formulas for K have units of force over length to the three-halves 
power. Therefore, if a remote stress, a, is the applied load for a member containing a crack, then the K-formula 
for that situation will have the form 

(11) 

whereas if a force per unit thickness, P, is the applied load, the form is 

P (a B L ) 
K= y'mig W'W'W' etc. (12) 

where for simplicity only Mode I K is considered in both of these formulas and a, B, L, W, etc. are the crack 
size and other characteristic dimensions of each configuration considered. A quick review of a few solution 
pages will reveal these formats and alternatives for other types of applied loading, such as moment per unit 
thickness, M. The nondimensional "configuration functions," f ()and g (),also have special characteristic 
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behavior depending on the type of configuration being considered. In particular, the finiteness of the body 
containing the crack, as described by the characteristic dimensions, often affects these formulas through 
separate factors, giving the forms 

(13) 

and 

(14) 

Reviewing a few solution pages also shows this to be characteristic of most of the K formulas.lt is the intent 
here to exploit this tendency to make estimates of stress intensity factors. 

EDGE CRACK 

We begin by considering the configurations on solution pages 5.1 and 8.1. The discussion is restricted to 
normal stress, a, on the boundaries. Note that the configuration of page 8.1 can be formed from that of page 
5.1 by cutting the latter along its vertical axis of symmetry. However, before cutting, uniform stress, a, on the 
boundary must be removed so that no (net) horizontal force is present on the free edge of configuration 8.1. 
This removal is illustrated by superposition in Fig. 1.1, which shows that although no net force remains, a 
distribution of self-equilibrating normal stress is left on the vertical cut surface. The maximum intensity of this 

+ t + cr 

C1' I 
I 

tS -- rafJ ~ - - -- --+-- -
I 

~ ~ +o- (no singularity) 

Fig. 1.1. 

stress is compression,- a, near the emanation of the crack from the edge and it dies away to zero at locations 
far from the crack as compared with the crack size, a. These remaining stresses on the cut in Fig. 1.1 must also 
be removed to make it into the free edge of configuration 8.1. In order to remove these stresses on the edge, 
tension is required near the crack site and compression farther away, to net zero everywhere on the cut. Note 
that these added stresses required to make the cut a free surface would tend to open the crack more than before 
cutting. This implies that the K values should be higher for configuration 8.1 than for configuration 5.1. 



1.3 Approximations and Engineering Estimates of Stress Intensity Factors 595 

Indeed, the factor is 1.1215 from the formula on solution page 8.1, or the difference in values is about a 12% 
increase inK due to the free-surface effect. Also notice that the introduction of the free surface caused a factor, 
j, to be incorporated in the K formula of the form 

K = uV7fll · f 
f = 1.1215 

(IS) 

Although this result was known from the solution pages, it illustrates the idea of using the 5.1 solution with 
a modicying factor to approximate solution 8.1. Note that a stress distribution on an edge perpendicular to the 
crack of maximum intensity equal to the applied stress caused a error of only 12%. 

Next, consider the center cracked strip configuration on solution page 2.1. Again the solution for K is 
given, but it is informative to consider how it might be approximated if the solution was not known. On 
solution page 7.1, the closed-form solution is given for the repeated crack problem, which could be cut on 
successive axes of symmetry between cracks to form a strip. The stresses along the cuts can be computed from 
the stress function, Z, after again removing the uniform lateral stress, u, as in the previous example. The final 
remaining self-equilibrating stresses on the cuts are again maximum at the crack line and of intensity given by 

ux(w,o) = u[~-1] 
2 cos w (16) 

Thus as the crack size a goes to zero compared with the strip width, W, the stresses to be removed tend to 
zero. Moreover, for a crack length of one-half of the strip width, the maximum stress to be removed is 
O'x = 0.414u. Again note that removing these stresses would tend to open the crack further. Noting the 
magnitude of stresses to be removed compared to the edge crack example, up to a crack size of half the strip 
width the estimated error inK would be 12% times 0.414 or about a 5% underestimate. Therefore, historically, 
the K formula on solution page 7.1 was considered a good approximation for the center cracked strip test 
configuration until a better formula became available. Indeed, we can improve it here by writing it as 

where 

fi.= 
W 1ra 
-tan-
7ra W 

and knowing that fi should be asymptotic to 1 for a diminishing crack, then we estimate 

fi=1+0.05(~) 2 
(compensates for 5% error for4a=W) 

(17) 

(18) 

(19) 

as an approximation. Now this result may not be as good as some of the better formulas given on solution 
page 2.1, but we can see that it is probably accurate within 1% for crack sizes up to more than half the strip 
width. Hence, without the benefit of other solution techniques, a very good "engineering estimate" is 
illustrated here. The purpose is simply to develop the method of forming good estimates. 

In addition, this example also illustrates the method of using factors for various configuration effects. The 
factor, Ji, is the exact factor for the nearness of periodic cracks in an infinite sheet, and fi is the effect of 
cutting on the axes of symmetry between the cracks. 
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DOUBLE EDGE CRACKED STRIP 

This configuration is also treated in Part II and presents an interesting example for estimation purposes. 
Notice that the configuration on solution page 5.1 can be cut on the vertical axes of symmetry centering on 
two adjacent cracks to form the configuration. Again removing the uniform horizontal stress field prior to 
cutting, the remaining self-equilibrating normal stresses on the cut surfaces are a maximum of- u compression 
at the locations of the cracks. For small cracks compared to the strip width, it is thus appropriate to use the 
1.1215 factor for edge cracks. However, as the cracks deepen and the tips approach each other, the force 
transmitted from top to bottom of the strip is transmitted through a narrowing neck, which is already 
adequately represented in the solution without cutting. Therefore, the 1.1215 factor should diminish to 1 
asymptotically as the crack tips approach each other. Consequently, an estimate of the appropriate effects is 

where 

Ji= 

and 

K = u..fiW: · Ji · Ji 

2b 1W 
-tan- ( 2b IS the strip width W ) 
1W 2b 

n 1ra 
fi = 1 + 0.1215 cos 2b 

(110) 

(111) 

(112) 

where n is guessed to be 2 or greater. In Part II, Tada found, taking n = 4, results in less than 0.5% error over 
the full range of alb· However, if we simply take the straight line approximation given by 

(113) 

the results are within 3%. Consequently, this example provides good approximations (even where the 
asymptotic behavior has been ignored). In the text of Part II for this configuration, other asymptotic 
approximations are given as examples of the possibilities. 

As a further note, for deep cracks in the double edge cracked strip, that is, a ____, b, the above solution can be 
shown to agree with the closed-form solution of page 4.9. This fact adds to confidence through agreement 
with an exact limiting case. When developing approximate formulas, checking with limiting cases should be 
done whenever possible. 

WEDGE FORCE SOLUTIONS 

Although configurations with concentrated forces applied to the surface of a crack are seldom of direct 
practical interest, they are useful through superposition techniques in forming the solutions to many other 
configurations and in developing estimates of K. The technique involves first solving for the stresses present 
on the crack surface with the crack absent and then using the wedge force solutions to apply distributed forces 
(or effectively opposite stresses) to wipe out these stresses on the crack surfaces. This technique is shown 
schematically in Fig. 1.2. The geometric configuration must be the same as the original configuration for the 
companion wedge force solution for superposition to apply exactly. However, for estimates, the companion 
wedge force configuration may differ slightly and with good judgment provide suitable approximations. This 
judgment can be developed through an understanding of "St. Venant's Principle" and like methods of 
intuitive stress analysis. 
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= + 

Fig.l.2 

WEDGE FORCES NEAR THE TIP OF A CRACK 

The wedge force solution for a semi-infmite crack with forces at distance, b, from the tip is given on page 
3.6 and is 

p 
K=-

v;b 
(114) 

where Pis force per unit thickness. It is especially noted that forces nearer the crack tip are of greater influence 
due to the inverse Vb in the formula. Taking limiting cases of all other wedge force solutions will show this 
same influence as b becomes small compared with other dimensions. Therefore the stresses on the crack 
surface near the crack tip with the crack absent are of greatest influence. This fact is very useful in making 
estimates. 

GREEN'S FUNCTIONS FOR STRESS INTENSITY FACTORS FROM 
WEDGE FORCE SOLUTIONS 

For internally cracked infinite sheets, the method illustrated by Fig. 1.2 can be used with the wedge force 
solutions on pages 5.10 and 5.11 to write forms that can be integrated to obtain K. In each of these solutions, 
the loadP may be replaced by <Jydx, and b withx for the integration, where <Jy = <Jy(x, 0) is the normal stress 
on the crack surface with the crack absent. For stress distributions, <Jy, which are not symmetric with respect to 
they-axis, from page 5.10: 

a 

K = _l_ J CYy /(i+X dx 
,;mz v~ 

-a 

For stress distributions symmetric with respect to they-axis, from page 5.11: 

(115) 

(116) 
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Note that for uniform stress, (}", applied to the sheet, the crack absent stress on the crack surface is (J"y = (}" 

(constant), which may then be moved outside the integral sign, whereupon integration gives~- The net result 
is the familiar form 

K=uViW (117) 

Although this result is trivial it verifies the method. More important is to note that for any crack absent 
stress distributions, (J"y, the integrals may be evaluated numerically, if not analytically. This is the reason that 
many wedge force solutions are given in this handbook for other configurations. They will be used later in this 
discussion on estimating. 

Wedge force solutions are also given for many three-dimensional problems (see solution pages 23.1, 24.3, 
24.24, 24.25, 25.1, etc.). In many cases, other solutions have been generated from these solutions (see 
adjacent solution pages) using the Green's function method for the same geometrical configuration with 
different loadings. These solutions are of assistance in estimating as well. 

PRELIMINARIES FOR ESTIMATING SOLUTIONS FOR THREE
DIMENSIONAL CRACKS 

The plane problems presented here are stress solutions that are independent of the thickness of the sheet. 
Consequently, they are really three-dimensional solutions which simply do not vary in the out-of-plane 
direction. However, for truly nonvarying conditions in the out-of-plane direction, the "constraint" conditions 
must be either plane stress or plane strain. With sheet thicknesses of the order of the crack size, a (or other 
significant planar dimensions), neither plane stress nor plane strain fully applies. Indeed, in regions of high 
planar stress gradients, the inner sheet conditions may tend toward plane strain with plane stress near the 
surfaces. The crack tip is just such a high-stress gradient region. Therefore, the K formulas have inherent error 
due to these constraint effects. However, if we view the in-plane displacements as being compatible 
(approximately equal through the sheet), then the stress differences are at most by the factor 1 - V, where vis 
Poisson's ratio. Therefore, for a perfectly straight crack front through a sheet of finite thickness, at some 
portions of that crack front our K formulas may be incorrect by a maximum equal to that factor (i.e., less than 
10% error maximum) and for the largest errors only a very small portion of the crack front would be involved. 
Therefore, the application of our "exact solutions" forK inherently involve some error. Moreover, crack 
fronts though the thickness of a sheet are never perfectly straight. Nevertheless it is the fmal objective to make 
"estimates" of reasonable engineering precision and feasible accuracy. 

INTERIOR "PENNY-SHAPED" CRACK 

The exact solution for the penny-shaped (circular), crack is found on solution page 24.1. Suppose that the 
solution forK is not known and we wish to estimate it for practice in forming estimates. Referring to Fig. 1.3, 
the K formula must contain a factor proportional to the applied stress, (}", and also to the square root of the only 
characteristic dimension, a. Then the only remaining element is to find the proper numerical factor, f, in the 
following form 

(118) 

Now if the crack were a straight through-the-body "tunnel crack" of width 2a, then f would be 1. Viewing 
the circular crack as made from the tunnel crack but with portions of the crack surface pulled closed, we can 
see that f must be less than 1 for the circular crack. In considering the technique of wiping out the stresses on 
the crack surface with the crack absent described in the previous paragraphs, we note that uniform stresses 
would be present. For the ratio of the area of crack surface to the length of crack front (about which the load 
transmission interrupted by the crack must be carried), note that the circular flaw has a ratio of one-half that of 
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Fig.l.3 

the tunnel crack. Based on that ratio, our first estimate of the appropriate f might be lf2· However, we note 
that the area of the circular crack is more closely gathered about its crack front. Our discussion of wedge forces 
noted that interruption of forces closer to the crack front has greater influence on K. Therefore our estimate of 
f should obviously be more than lf2; so a first guess might be about 2f3· The exact solution for f shows this 
intuitive estimate to be quite good. Comparing shows 

2 2 f =- = 0.6366 ~- (within5% error) 
7r 3 

(119) 

With a little practice in guessing we would conclude that 0.6 would be too small and 3f4 would be too high 
and conclude that the guess of 213 is a reasonable estimate between these "bounds," even if the exact solution 
is unknown. (If you agree, you are ready for further developments of techniques of estimating.) 

INTERNAL ELLIPTICAL CRACK (ESTIMATED SOLUTION) 

Consider a flat elliptical internal crack subject to uniform tension normal to the crack. Let the smaller of the 
semi-axes of the ellipse be described by a and the greater semi-axis by b. If a= bit would be the circular crack 
previously discussed, and b ____, oo, then it becomes the tunnel crack. The K along the crack front of the ellipse 
will vary but is obviously a maximum at the semi-minor-axis location since more of the area of crack surface 
is nearby per increment of crack front length. Suppose for practical reasons the maximum K is desired. The 
previous formula for the circular crack is appropriate with f assumed to be a nondimensional function of the 
ratio alb· A first estimate might be to assume that f varies approximately linearly from 1 for a;b = 0 to 2 In for 
a;b = 1. This can be expressed by 

( 2) a a f = 1 - 1 -:;;: b = 1 - 0.363 b (120) 

Now for a;b = 1f2 this estimate gives f = 0.818, whereas the exact solution gives f = 0.826, which 
indicates about a 1% error (not only a good guess but a very lucky guess!). Perhaps over the full range, it can 
be simply said that the error is expected to be within 5%. 
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INTERNAL ELLIPTICAL CRACK (EXACT SOLUTION) 

The full, exact solution for the internal elliptical crack subject to uniform remotely applied stresses is given 
on solution pages 26.1 through 26.4. The variation of K for all modes is given for points on the crack front 
around the ellipse. For practicality, the discussion here is restricted to applied normal stress perpendicular to 
the crack, which results in first mode K only. For this configuration, the result from page 26.2 with a and b 

aViffi . 2 a 2 
interchanged is ( 2 ) 1;4 

K = E(k) sm (} + b2 cos (} (121) 

where E(k) is a complete elliptic integral of the second kind depending only on the a;b ratio, which is found in 
Appendix L, and e is the parametric angle for the ellipse as on page 26.1. Of special interest in estimating K 
for imperfect elliptical shaped cracks is l, which is the length of the normal (from the ellipse itself to an 
intersection with its major axes). This length is also illustrated on page 26.1. As noted, it can be expressed by 

2 a 2 
( 

2 )'12 
l = a sin (} + b2 cos (} (122) 

The expression for K then simplifies to give 

(123) 

This formula demonstrates that K values for irregular internal flaws are dominated by the local geometry 
near the crack front region being considered through the strong dependence on l. On the other hand, the 
dependence on the overall crack shape through E(k) is quite limited since its values only vary from 1 to 1.57 
over extreme changes in shape. This concept is useful in making K estimates for both irregular internal cracks 
and surface cracks of various kinds. 

SEMI-ELLIPTICAL SURFACE CRACK 

Figure 1.4 shows a semi-elliptical surface crack perpendicular to a flat surface with remotely applied 
normal stress parallel to the surface and normal to the crack. It is chosen as a configuration that is typical of 
many flaws found in practice that are critical in impairing the strength of structures. These flaws are almost 
always two or more times as long on the surface from which they emanate as they are deep. Although no 
completely closed-form solution determined analytically is available for this type of surface crack, it has been 
discussed extensively in the literature by complicated semianalytical techniques and numerical methods, 
which almost always have hidden assumptions not accessible to the user. For this reason semi-elliptical 
surface cracks are good candidates for checking by K estimating procedures that are convenient, quick, and 
have no hidden assumptions. Therefore this problem is discussed as a first example of estimating for surface 
cracks. 

The standard approach here is to apply the usual form of 

(124) 

where the geometrical factors, fi and fz, are the effect of the elliptical shape, a;b, and the effect of introducing 
the front free surface, respectively. The first factor is taken from the exact elliptic solution as 

1 
fi = E(k) (exact) (125) 
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a. K 
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Fig.l.4 

The second factor is that the free surface, which tends to 1.1215 for long surface cracks, that is, a;b ----+ 0, and 
would tend toward 1 for semicircular shapes, a;b----+ 1, considering that the tendency for a surface crack to 
open further than an internal crack would be almost entirely suppressed for the semicircular crack. Therefore, 
it seems reasonable to estimate the second factor as 

fz = 1 +0.1215(1-~) (estimate) (126) 

This estimate is surely within 5% error and probably much better than that if good intuition prevails. 
Furthermore, there have been no hidden errors, numerical or otherwise, in our estimate; this fact instills 
confidence. 

SEMI-ELLIPTICAL SURFACE CRACK IN A FINITE TIDCKNESS 
PLATE 

The ASME Nuclear Pressure Vessel Code requires that postulated semi-elliptical surface cracks in the wall 
of a vessel, of a depth of lj4 of the wall thickness and of an aspect ratio a;b, are to be analyzed. Therefore our 
interest in semi-elliptic surface cracks in fmite thickness plates is evident. Figure 1.5 shows the configuration, 
including the fmite thickness, t, the effect of which is another factor h (aft), beyond those in the previous 
analysis of semi-elliptic surface cracks. Indeed, fz and h should be considered together in the analysis, since 
their effects are physically coupled. As an alternative, writing separate factors, their combined error effects 
should be considered together to form a total error for the separated functions. Now for a surface flaw in a 
fmite thickness plate,fz may be noted to be too large a correction by perhaps 5% at most. On the other hand, 
for the h correction factor for a crack tip approaching a back free surface, the "square root of tangent" 
correction previously applied to the central crack strip estimate was seen by itself to undercorrect by about 
5%. Therefore, by using these two corrections together in this analysis, we create compensating errors well 
within 5%. For this reason, we chooseh as (fi in the strip example) 

h= 
2t 1W 
-tan-
7ra 2t 

(127) 



602 Appendix I 

Fig.I.S 

This combined with the immediately preceding analysis leads to 

CYVJW [ ( a)] K = E(k) 1 + 0.12 1 - b 

(estimated error < 5% for a;t < lf2) 

2t 1ra 
-tan-
7ra 2t 

1.10 

(128) 

This estimating formula for semi-elliptic surface cracks in fmite thickness plates was first proposed by 
Paris (1965). Newman (1979b) used fmite element analysis to compare Paris' formula with about 10 
alternative formulas. He found Paris' formula to be the second most accurate of all of the formulas, many of 
which had complicated mathematical justifications associated with them. The simplicity of the logic and the 
freedom from hidden assumptions for the this formula makes it even more appealing. 

IRREGULARITIES IN SHAPE OF ALMOST SEMI-ELLIPTICAL 
SURFACE CRACKS 

Real surface cracks invariably are not of a perfect semi-elliptical shape, but almost all analyses of them 
assume they are perfect without special justification or consideration. It is most noticeable that the ends of 
these cracks, where they meet the surface, are almost never perpendicular to that surface. At other places along 
such a crack front the curvature also rarely perfectly matches the ellipse chosen. To better evaluate K along 
crack fronts of such irregularly shaped cracks it is desirable to discuss some possibilities for improvements. 

A first example is based on the actual shape of a preexisting crack in an F - 111 wing box that led to the 
loss of this aircraft in late 1969 and the grounding of this type of aircraft for more than 6 months. The crack is 
carefully drawn in Fig. 1.6 to illustrate its actual shape. In addition, the figure shows two perfect ellipses, one 
matching the length and depth of the real flaw, and the other matching the depth and curvature of the real flaw 
at the deepest point where K is anticipated to be maximum. The reason for selecting these two ellipses is that 
the first will give an "upper bound" on the K value and the latter will give a "lower bound" ofthe value and a 
better estimate as well. The second ellipse is a closer estimate because it better approximates the local 
geometric conditions at the point where K is desired. 
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Taking the approximate dimensions from the ellipses and computing the correction! for both results in 

K = (1.18 to 1.34)ay'1m (129) 

This shows a difference of about 15% in the coefficient f. The correct result is undoubtedly closer to the 
lower value but also surely above it (rather than the upper value, which most often is blindly adopted). Thus if 
we elect to estimate the proper value at 1.24 it would be 5% above the lower bound and 9% below the upper 
bound, and likely within± 3% or probably better for the geometrical correction factor f. Now the basis of the 
formula was no better than± 5% in the first place, so the maximum combined error would be± 8%. Knowing 
these bounds, the 1.24 factor could be intelligently adjusted up or down for a particular application depending 
on whether a low or high estimate is dictated by that application. Although engineering practice often simply 
computes a single "answer," the bounding technique and error estimates provided here have obvious 
advantages. Furthermore, in a real analysis of strength impairment of a structural component, the precision of 
the values of applied stresses and material properties should also be considered in a consistent fashion. Such a 
practice was actually followed in assessing the F - 111 failure. 

ESTIMATES OF K NEAR THE INTERSECTION OF A SURFACE 
CRACK WITH THE SURFACE 

Two difficulties in estimating K occur near the intersection of a surface crack with a surface. First, the crack 
tip stress field and its constraint parallel to the crack front change from plane strain in the interior to plane 
stress at the surface. Moreover, plastic flow near a crack tip will modify this constraint so that detailed 
solutions by purely elastic analysis for constraint effects will themselves be inaccurate. However, the 
difference between plane stress and strain is obviously a maximum factor in stress or K results approaching 
1 - v 2 . That is to say, at the plane stress region near the surface, K formulas may give up to about a 9% 
overestimate of K. Notice that near surfaces, fatigue cracks frequently lag behind interior growth, which is 
explained at least in part by this effect. The second difficulty is simply that flaws almost never intersect the 
surface with their fronts perpendicular to the surface. Even when almost semi-elliptic surface flaws intersect a 
surface, near that intersection, the curvature of the crack front does not match that of a perfect semi-ellipse. 
This difficulty in assessing the local K can produce large errors if the formulas for perfect ellipses are blindly 
applied. This second difficulty can be remedied by suitable estimating procedures for K. 
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It is noted from solution pages 26.1 and 26.2 that the formula for K near the narrow end of an ellipse is 

(130) 

where pis the end radius of the ellipse. For almost semi-elliptic surface cracks where they do meet the surface 
in a perpendicular manner this formula shows that K is strongly dependent on the local crack front radius p 
and more weakly dependent on the gross proportions of the ellipse throughE(k), since it only varies from 1 to 
1.57 for extreme changes in proportions from infinitely long to circular. Consequently, the above formula for 
K should be used with the local radius of the actual elliptical shape. This will normally give reasonable results 
when the crack front varies somewhat from perpendicular to the surface. 

C1. 

surface 

Fig.l.7 

For more extreme cases oflack of perpendicularity of the crack front to the surface, further considerations 
are appropriate. Figure 1.7 illustrates cases of interest. The left and right intersections with the surface (solid 
curve) are the extreme cases. The theoretical elastic stress intensity values, K, for the intersection points are 
actually zero for the left nonperpendicular type of intersection and infinite for the right one. However, 
practical treatment and judgment of the relevant values would probably dictate using the local radius p in the 
above formula for the right crack end, along with an E(k) using the proportion of the dashed ellipse. On the 
other hand for the left crack end, it would be appropriate to substitute l, the length of the perpendicular from a 
local portion of the crack front, for p in the above formula. Solution pages 26.1, 26.2, and 26.6 support this 
suggestion. Of course, corrections for front free surface and back free surface, as with previous estimates, 
should be added if finite thickness plate is involved. However, the back free surface correction would be less 
influential at the crack ends, sol or p should be used in the tangent correction rather than a. 

It needs to be emphasized here that, in most treatments of irregular semi-elliptical surface cracks, and in 
many computational programs, the effects of the irregularities discussed here have been simply ignored. As 
noted, these effects can be significant even for moderately irregular cracks. 

GROSSLY IRREGULAR SURFACE CRACKS 

For grossly irregular surface cracks, it is reasonable to use the intuitive knowledge gained from the 
preceding discussion to make estimates of stress intensity, K, at points along the crack front. Figure 1.8 is an 
example of such an irregular surface crack. For the initial discussion of this example, it is assumed that 
uniform normal stress, a, normal to the crack is applied remotely to this region of the body. The objective here 
is to estimate K on each segment of the crack front between points labeled A through H. With each segment, 
the logic of the estimate is explained to assist the reader in understanding estimating. 
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A - B: Along this segment, the K tends to zero at A and the relatively large crack to the right may be 
regarded as infinitely large. The K is then estimated as if it were an infinitely long surface (edge) crack as 

KAB = 1.1215av;;:f (131) 

where the crack depth l is most appropriately taken as locally normal to the crack front for the point of interest 
along A -B. 

B - C: By the time it reaches point C, the crack is deep enough that the total length, L, is fmite by relative 
proportions so that a correction for finite length such as E(k) is appropriate. Since E(k) itself only varies 
between 1 and 1.57 for extreme changes in proportions, a/ b, the estimation of the proportion to use is not 
critical. As the proportions are varied from fitting the curve of segment C - D to using the full length of the 
surface crack, L, the E(k) varies from about 1.21 to 1.07. Noting that the effective length is somewhere 
midway between these extremes, selecting approximately 1.14 is surely within 3% of correct. The 1.1215 
surface correction is also reduced by the finite length toward a minimum of 1 for a semi-circular crack. 
Obviously, this correction should be quite close to 1.1215, so we choose 1.09 as surely within 2% of correct. 
The overall correction is thus 

1.09 = 1.09 = 0.96 
E(k) 1.14 

(132) 

within a maximum error of 5% (really believed to be within 3%). Therefore as the point of interest moves from 
B to C, the K formula would appropriately change gradually (respectively) as 

Ksc = (1.1215 to 0.96)av;r;;; (133) 

This should allow estimating K on this segment within 5%. 
C-D: For this segment, the K values would be best approximated by the dashed ellipse fitting the 

segment, with the following modifications. The front free surface correction should be reduced to the 1.09 
value previously elected, and the E(k) value should be modestly reduced from the 1.21 value for this ellipse. 
Electing a reduction to about 1.15 is surely within 3% of correct. The result is 

Ken = 0.95av;r:;; (134) 

For this segment the values of K are surely well within 4% of correct with the worst error likely 
approaching D. Since the values that will result from this formula are considerably larger than those from the 
formulas for earlier segments due to larger values of l, its precision would probably be more important in a real 
application. Indeed, for this configuration of crack, the maximum K probably occurs on this segment and 
precision is therefore most important here. 
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D - E: Estimating K over this segment poses special problems due to the reversed curvature of the crack 
front. In particular the surface correction would gradually exceed the 1.1215 value with its maximum at the 
nearest point of the crack front to the surface, because the crack is deeper on both sides of this point. 
Accounting for the fmite length, L, for this configuration would reduce the 1.1215 factor to a minimum of 
about 1.09 using previous forms. Therefore, at the portion of this segment nearest the surface it can be stated 
that 

KnE (min) 2: l.09a"J 7rlnE(rnin) (135) 

On the other hand, taking the dashed straight line joining the peaks in the crack depth and using l 1 at that 
same location would indicate a maximum K, again adjusting for finite length, as 

KnE(max) ::::; 1.03ap;;;; (136) 

At this location l 1 is noted to be about twice the size of/. Accounting for the numerical coefficients in these 
expressions, the second exceeds the first by about 33%. Intuitively, the correct result should be closer to the 
minimum than the maximum, since it clearly is a closer representation of the real configuration. Hence, the 
estimate should increase the minimum by considerably less then half of 33%, so 10% is taken. Based on this 
logic, the K at the nearest point on D - E to the surface is estimated as 

KnE = l.20aJ7rlnE(rnin) (nearest point) (137) 

This estimate is also believed to be within 5% of the correct result. 
As a check on this result the notched round bar solution on page 27.1 may be consulted. It has a crack front 

with reversed curvature as is the case for the nearest location on segment D -E. Matching this crack front 
curvature in a notched round bar and taking l DE(min) as the crack depth in the notched round bar (estimated as 
a;b = 0.75 for the round bar) results in a coefficient of 1.21 instead of the 1.20 estimated above. This degree of 
agreement is somewhat fortuitous, since the notched round bar does not have increasing crack depth as the 
point is moved away from the nearest to surface location and neither does it have a finite length crack, which 
would cause errors to be somewhat compensating. However, the agreement is acceptable and helpful in giving 
confidence in the claim of 5% accuracy. 

E- F: For this segment the suggested procedure is to consider both the dashed ellipse best fitting points 
E- F- G- H, with emphasis on fitting the curvature of E- F, and also taking the dashed semi-ellipse 
fitting E- F. For the former, the free surface correction should acknowledge more effect atE diminishing 
toward F, from a value exceeding 1.1215 to 1, respectively. On the other hand, for the latter semi-ellipse, the 
results at E should be modestly reduced considering the gross deviation in shape at the right end 
and this reduction should be increased significantly approaching F. Indeed, upon reaching F the results of the 
first complete ellipse should be considered as the relevant estimate, whereas the estimates of the semi-ellipse 
are most relevant at E. Estimating the free surface correction for the semi-ellipse atE to be about 1.08 should 
give results within 5%. Estimating the full dashed ellipse's surface correction to be entirely absent or 1 should 
give results within 5% at F. It then remains to simply interpolate between the two for points E and F smoothly. 
This is left to the reader. 

F - G: Between F and G the curve should be best fit with a radius, PFG, which, using the full dashed 
ellipse, leads to 

a,fifPFG 
KFG = E(k) (138) 

Because this segment is away from the influence of the free surface, it has not been corrected for it. However, 
since there is some remote free surface, it is a lower bound of the K estimate but certainly well within a 5% 
error of the actual value. A factor of 1.02 could be added to this expression, which would imply the accuracy 
then to be within 1% (if the inherent error is ever that small). 
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G- H: Before even getting to G along F- G, a correction for a crack approaching a back free surface 
might be considered. However, it was omitted here because conditions along G - H become exceedingly 
difficult for simple estimating. First, it should be noted that K tends to infinity at reversed intersections with 
the surface, such as at H. In any analysis of a real problem, the ligament between the crack and the surface 
would be subject to stresses causing yielding to spread away from H, perhaps beyond G, depending on 
nominal stress levels. Therefore, it may be dangerously irrelevant to attempt an estimate. With that in mind, 
we proceed assuming that elastic action prevails. The opened part of the crack in the region between 
E - F - G - H would shed load onto the uncracked ligament adjacent to G -H. Crudely, the stress 
interrupted by half of the width of the dashed full ellipse would be dumped through that ligament. The net 
section stresses there would thereby increase from approximately 30' at G toward infinity at H. These 
increased ligament stresses could then be used in a solution, such as on page 9.2, to estimate K. Such a 
procedure is omitted here, as large errors would be present and the relevance is doubtful. 

It might be more relevant to expect cracking of such a ligament in any application and anticipate the crack 
to grow in the end shape of the semi-ellipse shown. That is, we could start our estimates from some 
intermediate shape that would be easier to analyze with less loss of relevance. This also is left to the reader. 

ADJUSTMENTS FOR STRESS GRADIENTS IN ESTIMATES OF K 
FOR SURFACE CRACKS 

Generally with cracks absent, the stresses in bodies containing cracks vary gradually and continuously 
throughout the region where a crack appears. Exceptions are left for more advanced individual treatment. 
Restricting the discussion to normal stresses perpendicular to a crack, first consider the variation in stress, 0', 

along a surface in the direction of its intersection with the crack. Figure 1.9 shows the crack under 
consideration. 

surface 

Fig.l.9 

The analysis of the behavior of K along an elliptical crack shows a strong dependence on local stress 
conditions. For a point P, as on Fig. 1.9, the stresses are on and near the normal to the crack front, l. This local 
stress dependence is also borne out by the character of K caused by wedge force solutions in both two and 
three dimensions as noted on solution pages 3.6 and especially page 23.1, as well as others. Therefore, the 
simple rule to accommodate gradients of stress along the surface is simply to take the average stress, 0', on l 
with the crack absent to evaluate K at point P. 

Furthermore, if stress gradients occur normal to the surface, additional consideration should be 
superimposed. Fig. 1.10 illustrates a linear gradient normal to the surface that is divided into the constant 
stress occurring at the crack front point, P, of interest and the additional stress away from that point. Now the 
K due to each of these distributions should simply be added. The K for the constant stress is as treated earlier. 
For the additional linearly varying stress normal to the surface with zero at the crack front, it is helpful to 
review the solutions on pages 8.1 and 8.6, and 28.1 and 28.2 and to note the effect of stress gradients normal 
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Fig. 1.10 

to the surface for both infinitely long surface cracks (edge cracks) and the other extreme of semi-elliptical 
cracks (i.e., semicircular cracks). The results are that an equivalent stress a can be found for insertion into 
formulas for uniform stress, where for long cracks it gives 

u = u1 + 0.39uz (139) 

and for semicircular cracks it gives 

u = u1 + 0.30uz (140) 

Now these forms are so similar that it is relevant to suggest for elliptical cracks that a suitable 
approximation is 

u = u 1 + [ 0.30 + 0.09 ( 1 - ~) J u2 (141) 

This form is obviously quite accurate since it is exact at both extremes of elliptical shape and the adjustable 
term containing a/ b is very small for stress distributions with a2 of the same magnitude or smaller than a 1 . 

Thus any error from this factor would normally be within 2 or 3%. Moreover, using the stress distribution 
along l in Fig. 1.9 is entirely appropriate within the stated degree of accuracy. Finally, if the stress distribution 
with the crack absent varies in a nonlinear manner, as in Fig. 1.11, then taking the extreme linear 
approximations using a2 or a' 2 will give error extremes between which suitable judgments can be made with 
assured accuracy. This method accommodates having continuous stress gradients both along and into the 
surface. However, if the stress distributions are sharply peaked at the surface, such as near a notch, or 
otherwise not a smooth stress distribution, then estimating should be approached with extra caution. An 
example follows. 

P Oi 
ft---~ 

--

Fig. 1.11 
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CRACKS EMANATING FROM A ROUND HOLE IN A PLATE IN 
TENSION 

Figure. 1.12 shows a circular hole in a plate subject to uniform uniaxial tension, u, remotely applied. 
Assuming symmetrical through-thickness cracks exist at the maximum stress concentration points on opposite 
sides of the hole, it is desired to determine the K values for this case. Although a solution appears on page 19.1 
for this configuration, the estimating method as developed in the previous paragraphs here will be compared 
with this solution to evaluate the estimating method with nonlinear stress gradients. 

With the crack absent, the stress distribution for normal stress on the crack plane is described by 

(142) 

From this expression it is noted that a sharp peak in stress, of a value 3u, exists next to the hole, which 
nonlinearly diminishes to a constant value, u, away from the hole. The crack emanates from the surface of the 
hole that is not flat so that the 1.1215 surface factor should diminish rapidly away from the hole but in an 
unknown manner. Therefore, using that factor without diminution would cause an overestimate in K as the 
crack lengthens. Consequently, the previous method, using u'2 , which would cause underestimates, is used 
with that factor for the evaluation. The resulting form is 

K = 1.1215(ul + 0.39u'2 )V7ffi (a/R « 1) (143) 

On the other hand, for larger cracks, the hole itself may be regarded as part of a longer crack of length 
2a + 2R in a sheet with uniform tension. This can be evaluated with the familiar form 

K = CTV7r(a +R) = CTVJW. R (aiR» o) (144) 

Now both of these formulas forK will tend to give exact results, the first as the crack size approaches zero 
and the second for very large cracks (i.e., a large compared with R). In the intermediate region, both tend to 
give overestimates of the real K. Therefore, electing to take the smaller value ofthe two would tend to give the 
most reasonable results. The results are tabulated in Table 1.1 and are compared with Tada's best fit form from 
page 19.1. 

t t t <T 

Fig. 1.12 
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Table 1.1 

a [at a',] ~ Tada p. 19.1 %Error Green's Function R. 1.1215 u+0.39u 

0 3.3645 (infinite) 3.3645 0% 
0.02 3.2804 3.2357 +1.4% 
0.05 3.1422 (4.5826) 3.0614 +3.0% 
0.10 2.9494 (3.3166) 2.8131 +4.8% 
0.15 (2.7822) 2.7689 2.6079 +6.2% (2.2397) 
0.20 (2.6359) 2.4495 2.4357 +0.6% (2.1305) 
0.30 2.0817 2.1679 -4.1% 1.9554 
0.50 1.7321 1.8246 -5.3% 1.7189 
0.70 1.5584 1.621 -4.0% 1.5697 
1.00 1.4142 1.444 -2.1% 1.4301 
Infinite 1.0000 1.000 None 1.0000 

These results speak for themselves for confirming the method of estimating in this difficult case. Other 
improvements could be attempted, but this seems sufficient to demonstrate the method. For example, the 
second integral (116) can also be applied by regarding the hole as part of the crack. It will give even better 
values at intermediate crack sizes, that is, for a/ R of about 0.50 to 3.0 or more. Defming the apparent half
crack length as l = a + R, the appropriate form is 

I 

K = 2 f!..J uy(r)dr 
y; ~ 

R 

(145) 

where uy(r) is given by (142). 
Integrating, the numerical values are the fmal colunm in Table 1.1. 



APPENDIX J 

RICE'S J-INTEGRAL AS AN 

ANALYTICAL TOOL IN STRESS 

ANALYSIS 

The J-lntegral, which is most often associated with elastic-plastic fracture mechanics, is also a useful tool 
for linear and nonlinear elastic stress analysis of cracks. It is therefore discussed here, mostly in the latter 
elastic context, but with some comments on elastic-plastic analysis as well. It has also often been used as a 
powerful analytical tool in combination with fmite element analysis, which shall get only minimal comment 
here. 

The path-independent integral form of J, as illustrated by Fig. J.l, is given by Rice (1968a) as 

where 

and 

f ( au; ) J= Wdy-T;d;ds 

r 

£ij 

W = j O'ijdEij = elastic strain energy per unit volume or work per unit volume if plastic 

0 

T; = O'ijnj = traction on the contour r 

nj = components of the unit vector normal to contour 

Fig. J.1 

611 

(Jl) 
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With the usual assumptions of equilibrium, small strains and rotations, and assuming that elastic behavior 
or deformation theory of plasticity applies, then 

W = W(cy) or 
aw 
-=O'y 
Ocij 

(J2) 

These assumptions, along with the Green-Gauss Theorem, allow the proof that the J-Integral is path 
independent when integrating on any contour, r, from the lower to upper crack surfaces, provided that the 
material is a continuum and that no singularities or loads are enclosed within r, except the crack tip itself. 

PHYSICAL INTERPRETATION OF J FOR NONLINEAR ELASTIC 
CONDITIONS 

The crack tip with the contour attached may be advanced by an increment, da. The terms in the J-Integral 
interpreted as a result of that advance are illustrated in Fig. J.2. Rice (1968a) notes that the value of 

Fig. J.2 

the J-Integral is the amount of energy pouring through the contour per unit increase in crack area, as 
characterized by da. This means that for nonlinear or linear elastic conditions, J gives the Griffith energy rate 
per unit increase in crack area, or 

2 

J = G = ~~ (elastic: linear or nonlinear) (J3) 

Shrinking the contour to zero then shows that J is the energy made available for crack extension under 
elastic conditions. However, under conditions of plasticity, since W is not recoverable energy, J is not the 
energy made available for separation. Nevertheless, for the deformation theory of plasticity J remains a path
independent integral, subject to the other interpretations to follow. However, the above relationship to K 
allows the J-Integral to be used to evaluate K directly for various analytical and finite element numerical 
analyses. 
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EXAMPLE OF THE USE OF THE I-INTEGRAL IN EVALUATING G 
ANDK 

Consider the mixed boundary value problem for the configuration shown in Fig. J.2a. It shows a sheet 
stretched uniformly prior to clamping rigid, smooth parallel boundaries perpendicular to the stretch direction, 
and with a centrally introduced crack from one edge subsequent to clamping. The sheet is considered to be 

Fig. J.2a 

elastic but not necessarily linear. This problem is analogous to the vertical periodic array of cracks problem of 
page 12.1. The application of the J-Integral follows by integrating on the contour shown. On segments A - B 
and E - F, where all stresses are relieved, there are no tractions, nor any strain energy, W, so that portion of 

the integral gives zero. Further on segments B - C and D - E, dy, Tx, and ~ are zero so the integration 

there gives zero. On the final segment C-D, the tractions are zero but the strain energy, W, remains 

undisturbed by the crack and is constant withy. 
Therefore, integration over the full contour, r, is reduced to 

h 

J = G = J Wdy = 2Wh (nonlinear elastic) 

-h 

However, if the sheet is linear elastic, then 

CY2 Kz 
J = G = - h = - (linear elastic) 

E E 

(J4) 

(JS) 

This otherwise difficult problem for fmding G or K is made almost trivial by the J-lntegral method. For 
such special problems, the method can be very useful, including use with numerical methods such as finite 
element methods into the elastic-plastic regime. 
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RELATIONSHIP OF J TO CRACK OPENING STRETCH, 8r, FOR THE 
STRIP YIELD MODEL 

J.4 

The strip yield model, as discussed in Section 30 and its solution pages, has a crack opening stretch at the 
crack tip that is directly related to J as follows. Figure J.2b shows any of the crack tip situations for all 
configurations. The shaded plastic zone is assumed to be perfectly plastic with a yield strength, ITo, applied to 

'/ 
plastic zone 

opening stretch 

Fig. J.2b 

the zone as a constant traction, Ty = ITo, top and bottom. Then, since dy is zero, and ds is simply dx or -dx, 
integrating around the contour gives 

(J6) 

This simple result allows conversion to J for the strip yield results in Section 30. However, the idealization 
of strip yielding can simply be dropped to allow the yielding to spread, in which case it is still found that the 
relationship is given by 

(J7) 

where 1 is a constant of the order of one, depending on plane stress or plane strain yield zone conditions and 
the hardening coefficient of the material. In any event, this J-lntegral calculation has demonstrated the 
appropriate type of relationship in a direct fashion. 

ALTERNATE "NONLINEAR COMPLIANCE" DEFINITION OF J 

The preceding nonlinear elastic energy rate interpretation of J itself suggests further alternative forms for 
the definition of J for both elastic and elastic-plastic circumstances. Consider, a nonlinear elastic body 
containing a crack and loaded as shown in Fig. J.3. Suppose the body is loaded by a force, P, whose work
producing component of displacement is denoted 8. For elastic conditions the load displacement diagram 
might look as shown in Fig. J.3 up to point A for constant crack length, a, where the value of J is desired. At 
that point, if the displacement is fixed, and the crack is advanced by an increment, da, the load will drop to 
point B with no further work ofloading induced. Then at point B, with crack size now a + da, unloading will 
result in the curve from B to 0. The region 0 - A - B - 0 on that load displacement curve is the energy 
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Fig. J.3 

given up for the crack extension da, and is therefore equal to Jda. Considering that fixity of the displacement 
in the preceding argument would change the result only by a higher-order double differential, it can be seen 
that fixity does not influence the result. Therefore, J may be determined from 

6 p 

J=- -d8= -dP J {)P J 88 
oa oa (J8) 

0 

These two integral forms in terms of load displacement relations are equally valid definitions of J, 
consistent with the original contour integral defmition given by (J1). Indeed, the elastic-plastic load 
displacement curves for two samples of crack sizes a and a + da on the final load displacement curve in Fig. 
J.3 would be identical to those in the nonlinear elastic case under deformation theory of plasticity 
assumptions, if the loading stress-strain curves of the elastic and elastic-plastic materials were identical. 
Therefore, these alternate defmitions of J, by the above integrals, also equally apply under deformation theory 
restrictions for the evaluation of J. 

These alternate defmitions of J made possible the experimental technique used in the famous works of 
Landes (1972) and Begley (1972) for measurement of J under elastic-plastic conditions. Further, for 
purposes of computing or estimating J in practice, the above "nonlinear compliance" form of J leads to the 
following consideration. For linear-elastic plastic conditions the displacement can always be exactly divided 
into its elastic and plastic parts. That is to say: 

(J9) 

The second integral form then becomes 

p p 

J = J 88et dP + J {)8pt dP 
oa oa (J10) 

0 0 
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Now the first of these two integrals is exactly the linear-elastic energy rate, G, and the second can be 
converted by analysis of load versus plastic displacement (plastic part only) to result in 

(Jll) 

This form has a great advantage when used to estimate J under elastic-perfectly plastic conditions (no 
hardening), because for large plastic deformations it gives 

J ~ G- ()plim 8 I oa p 
(J12) 

where Pum is the fully plastic limit load. Actually, since the first term, G, in this expression is small for large 
plastic deformation, the second term by itself is often an adequate estimate of J. 

THE HUTCHINSON-RICE-ROSENGREN (HRR) CRACK TIP 
FIELD EQUATION INTERPRETATION OF J 

Hutchinson (1968) and Rice (1968b) independently demonstrated that the near-tip stress and strain fields 
within the plastic region can be found for materials, if they are reasonably represented as purely power 
hardening well beyond their elastic range, which are the conditions near a crack tip in elastic-plastic materials 
even with moderate loading. A power-hardening material is represented by the stress-strain relation 

(J13) 

For such a material, in the intense plastic enclave at a crack tip, the field equations have a dominant term 
(the only singular term) of the forms 

( J )nh 
CYij = CYo -- ~. (B,n) 

rYoC:or " 
(J14) 

( J )nh 
C:ij = c:o -- Eif(B,n) 

CYoc:or 
(J15) 

Again these equations were developed assuming deformation theory of plasticity with small strains and 
rotations. They are therefore "valid" in a region surrounding a crack tip, away from the tip by an amount 
measured by the crack opening stretch, but near to the tip compared with planar body dimensions and well 
within the crack tip plastic zone. Therefore, J may be interpreted as the strength of the plastic field 
surrounding the crack tip, just as K has been interpreted as the strength of the elastic field for small-scale 
yielding conditions, However, the J field strength does not depend on the presence of small scale yielding 
conditions! Further, it is clear that, for any monotonicaly increasing true stress-strain behavior, the power law 
assumed is not necessary to have J as the relevant intensity parameter. Indeed, J is the parameter that reflects 
the effects of body configuration and loading on the surrounding crack tip plastic field. 
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I-CONTROLLED CRACK GROWTH 

In various applications, it is desirable to use a parameter such as J to measure the effects of loading and 
configuration on crack tip deformation and stressing. To justify using J, the assumptions of deformation 
theory of plasticity must reasonably prevail in the surrounding crack tip field. The "no unloading" and 
"proportional straining" assumptions are of concern if the crack is extending, da, as loading or imposed 
deformation, as reflected by dJ, is occurring. To consider the proportionality of straining, Hutchinson (1979) 
formed the differential of strain dsij to compare it with the preceding strain field equation. The result was of 
the form 

(J16) 

where the parentheses of the second term, if multiplied by a characteristic planar dimension, is of the order of 
the first term excluding the dJjJ. However, the second term results in an r, e distribution of strain that is 
nonproportional to the original strains. Hence proportional straining only occurs for situations where the 
complete first term dominates the second. This is the case if 

dJ da -»
J b 

(J17) 

where b is the relevant characteristic dimension for the field, which is normally the remaining uncracked 
ligament ahead of the crack. On this basis the conditions for valid "J- controlled crack growth" are stated as 

dJ b 
w =-·- » 1 (and !1atotal «b) 

da J 
(J18) 

For example, the "validity" of J- R curve data is limited to portions of the curve where its current slope 
fjfa divided by current J is large enough for the specimen size, as measured by b to keep w » 1. Valid 
cgnditions for crack growth must also apply in any proper structural application. 

FURTHER DIMENSIONAL CONSIDERATION OF THE HRR FIELD 
EQUATIONS 

Note that the preceding HRR field equations imply that J is characterized by stress times strain times a 
characteristic length. In the analysis of a cracked body with a single characteristic dimension (the crack size) 
subject to a uniform remote field of stress (and thereby strain), the form of the applied J must be 

J= Cuca (J19) 

where Cis a constant for the particular configuration (an infmite plate with a crack oflength 2a perpendicular 
to the stress direction, or a semi-infinite plate with an edge crack or an internal circular crack or semi-circular 
surface flaw, etc.). For example, the familiar Griffith configuration gives 

2 

J = G = 1ru a = Jruca 
E 

(J20) 

Now, for example, applying this result to a material that is represented appropriately by the Ramberg
Osgood relation 

c 0" ( O")n ---+a-
co uo uo 

(J21) 
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then the relationship for J for this particular configuration becomes 

(J22) 

This is an excellent form for approximating J when the applied stress, (}", exceeds (J"o for the Griffith 
configuration, and for others with the single characteristic dimension of the crack, by appropriately adjusting 
the constant 1r in this expression. The first change is for the constant adjustment in the elastic solution, for 
example, the 1r should be replaced by 4/1r for the penny-shaped circular crack. Second, the coefficient, a, 
should also be increased because ofhardening, approximately by the factor (1 + 0.26n) to accommodate fully 
adjustments for the nonlinear material behavior term according to Paris (1983a). 

A reasonable approximation for configurations with more than one characteristic dimension is to use the 
linear elastic configuration correction factors for stress levels, (}",at or not far above (J"o. The final form for such 
approximations uses both the above stress correction bracket and a geometry correction bracket as well, in the 
form 

J = CTocoa{Stress}[Geometry] (J23) 

The separated nondimensional brackets are convenient in applying Tearing Instability Theory for the 
stability of growing cracks using R-curve concepts, as well as other applications. (It should be noted that the 
EPRI Elastic-Plastic Fracture Analysis Handbook method is based on similar approximations from 
dimensional considerations.) 

RICE'S ANALYSIS FOR PURE BENDING OF A REMAINING 
LIGAMENT 

For a semi-infinite plate with a semi-infmite crack approaching the free edge leaving a ligament subject to 
pure bending, as shown in Fig. J.4, dimensional analysis leads to a very useful result. For this configuration, 
the relative angle change,(}, between the applied moments (per unit thickness), M, must depend only on that 
moment, M, and the only characteristic dimension, b, the ligament size, and the stress-strain properties of the 
material (whose dimensions are those of stress, FjL2 , and strain, nondimensional). Therefore, M and b must 
appear in a combination to give FjL2 to allow(} to be nondimensional. Formally stated, (}must be 

(} = f (7z , stress-strain) (J24) 

This functional form is true for both elastic and plastic behavior. The form may be inverted to give 

(J25) 

where F( ) includes the materials properties (constant). Considering that da = -db, then this result may be 
put into the alternative nonlinear compliance form for the J-lntegral to give 

B B B 

J=- J~:I/B=+ J 2bF(B)dB=~J Md(J (J26) 

0 0 0 
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edge 

Fig. J.4 

where the crack size, b, remains constant and the final integral of MdB is the work done in loading. This result 
is independent of the actual elastic-plastic stress-strain relation as long as no crack growth occurs. Again, for 
pure bending, it is 

2 
J = b (Work) (no crack growth) (J27) 

where (Work) is per unit thickness of plate. For other configurations with a single characteristic 
dimension similar simple forms are possible, (see Rice 1973). 

Now, when crack growth is occurring under J-controlled growth conditions so that deformation theory of 
plasticity applies,J may be considered to be a function of deformation, 8, and crack size, a, (or b): J = J(B, a) 
and an increment in J must be computed by 

(J28) 

Forming dJ for pure bending of a ligament from this result and (J26) gives 

2 J 
dJ = y;d(Work)- y;da (for J-controlled growth) (J29) 

Consequently, J may be computed as an increment-by-increment accumulation under J-controlled crack 
growth conditions. For other configurations similar forms may be written for dJ, including those with more 
than one characteristic dimension (see Ernst 1979). However, the principles have been adequately 
demonstrated here. 

As a final example, showing the results of the preceding dimensional arguments, the formula developed by 
these means for the determination of J for ASTM standard Compact Specimen tests is 

where 

TJ = 2 + o.s22(b!w) 

"Y = 1 + o.16(b/w) 

(J30) 

(J31) 
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and the current values of each parameter here should be used in evaluating the next increment, b. J. Here the 2 
in TJ, and the 1 in 1 are limiting factors agreeing with the preceding analysis where W is large compared to b, 
tending toward pure bending of the remaining ligament. 

The result that the work in pure bending of a remaining ligament is directly related to J, the strength of the 
crack tip field of deformation, undoubtedly gives a sound basis for the use ofbending tests, such as the Charpy 
impact test, to evaluate fracture toughness. Indeed, that result, which does not rely on the particular stress
strain curve of the material but only on the consequent work of the loading, is surprising in its generality. 
Another example of a surprising result follows here to demonstrate the unique qualities of the J -Integral. 

J FOR THE DOUBLE CANTILEVER BEAM CONFIGURATION 

The configuration of a double cantilever beam is shown in Fig. J.S, with opposing concentrated loads 

=TAx 

rr T 
...... f-Ax 

Q. J 
_I 

X 

1 T - L -
Figure J.S 

modeled by uniform tractions over short segments (A.J. Paris 1988). The original contour J-lntegral form, 
(Jl), will be used to evaluate J over the contour A- B- ···-F. Note that Wdy is zero over the whole 
contour and tractions are zero everywhere except at the load points where Ty = T. Therefore the integral 
becomes 

ili; 0 

f ( &ui ) J auy J Ouy J= Wdy-Ti-ds =- T-dx+ T-dx 
ax ax ax 

(J32) 

0 ili; 

where the items in the final integrands are constant. The partial derivatives of the displacements at the load 
points are the relative rotations of the arms with respect to each other, totaling (), which gives 

J=PB (J33) 

This result gives J in terms of the load, P, and relative arm rotations,(), independent of the elastic-plastic 
stress-strain properties, in terms of the final values of load and rotation, without requiring values during 
loading. This is a most amazingly simple result, showing the power of the J-Integral in analyzing the effects of 
loading on the intensity of the stress-strain singularity at a crack tip. 
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ELASTIC-PERFECTLY PLASTIC ESTIMATES OF J 

For elastic-perfectly plastic behavior (no hardening) of the load-displacement relationship for a crack body, 
J can be estimated with good accuracy in terms of linear-elastic results and limit load behavior, as follows. 
The alternate nonlinear compliance form of J is given by (Jll) and (J12) 

(J34) 

where the rate of change of limit load, Plim• with crack size is often known (always negative) or easy to 
compute. Especially for large plastic deformations, this is an accurate and practical way to determine J. In 
addition to many other potential applications, this method provides a direct way to evaluate J in bending of 
beams, tubes (pipes), and the like where plastic hinges form at cracked sections in statically determinate or 
indeterminate structures. Notice that this method can be easily and consistently incorporated into "plastic 
design" approaches, including collapse mechanism analysis. It is also effective in analyses of crack stability in 
beams under J-controlled growth of cracks (see Paris 1983b ). 

CRACK STABILITY UNDER I-CONTROLLED GROWTH 
CONDITIONS 

Tearing instability theory, as initially developed by Paris (1979) and others, such as Hutchinson (1979) 
identifying conditions for applying J -controlled growth, allows evaluations of crack stability for linear and 
nonlinear elastic and elastic-plastic conditions where deformation theory of plasticity applies, that is, for all J
controlled growth conditions. It argues that equilibrium of a growing crack is expressed by the first derivative 
of energy, U, with respect to crack size, which is expressed as 

dU 
J = - = R (equilibrium) 

da 
(J35) 

where R is the material's resistance to crack growth in terms of energy or work required per unit increase in 
crack area. R is frequently presented as an "R-curve" of a material in terms of resistance, R, for a given crack 
extension, D..a, from its initial size. The J here is considered to be the applied J reflecting the loading and 
configuration of the deformed body. Crack stability then depends on the second derivative of energy, or 

dJ d2 U dR 
- = - ( < or >)- ( < stable; :2': unstable) 
da di -da 

where rfla is the slope of a J-lntegral R-curve. 

Defining the nondimensional parameters 

stability is judged by 

dJ E 
Tappl =d·2 

a cro 
and 

dR E 
Trnat =-·

da 2 
cro 

Tappl ( < or :2':) Trnat ( < stable; :2': unstable) 

(J36) 

(J37) 

(J38) 

It is convenient to plot diagrams ofT vs. J to analyze stability continuously as J increases with loading or 
deformation. These diagrams identify first instability somewhat more conveniently than techniques 
employing using tangency with R-curves (see Paris 1983a). 
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APPLICATION OF C* (TIME DEPENDENT J) TO CREEP CRACK 
GROWTH 

J.12 

Begley (1976) showed that a modified J-Integral, denoted C*, replacing strain and displacement with their 
time derivatives, is a controlling parameter for certain creep crack growth behaviors. In such cases the integral 
is defined as 

(J39) 

where 

w' = j CYijdE:if (J40) 

and the dot over them indicates time derivatives of E and u. Later discussions of this time rate-modified J
lntegral have been provided by Riedel (1980, 1989), in which its further relevance to applications has been 
given. 

APPLICATION OF ~J TO FATIGUE CRACK GROWTH 

Dowling (1976) suggested computing the range of J or !}J added during a load cycle in fatigue and 
correlated that parameter with the cyclic rate of crack growth. The M in this work was defmed in cyclic 
plastic bending of a remaining ligament as 

(J41) 

where~ Work was defined as the area under the crack-opened portion of the loading cycle. This parameter 
correlated fatigue crack growth rates under cyclic plastic conditions, and also related these rates to other 
fatigue cracking rates for tests in the small-scale yielding regime by 

(J42) 

Although the assumptions of deformation theory and thus J normally do not allow unloading, the success 
of this method may be taken to imply no effects of the prior unloading cycles, that is, no history dependence. 
Indeed, these last two examples of applying J to time-dependent and cyclic loaded subcritical crack growth 
demonstrate the power of J as a relevant analysis parameter. 

In conclusion J has been demonstrated here to be a powerful analytical tool for a wide range of 
applications, from providing a method to evaluate K and G under elastic conditions to nonlinear elastic and 
elastic-plastic applications of correlating cracking behavior under static, time-dependent, and even cyclic 
deformation and loading. It generalizes analysis under a broader scope, including as a special case, linear
elastic method employing K and G. Its arguments and assumptions go beyond but are completely consistent 
with linear-elastic fracture mechanics methods. 
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ELASTO-PLASTIC PURE SHEAR 

STRESS-STRAIN ANALYSIS 

(MODE III) 

This appendix presents a method of developing "exact solutions" to elastic-perfectly plastic problems in 
pure shear for the stresses and strains in both the elastic and plastic regions. Since no such analytical method is 
available for any other (Mode I or II) crack problems, this Mode III method is given to illustrate the nature of 
plasticity in this rather special case as it may aid intuitively in more general problems. The method to be 
presented was fully developed in Rice (1966, 1968c, 1984) and similar problems were previously investigated 
by F. A. McClintock in the 1950s. 

Pure shear (or anti-plane shear) results from problems where the deformations can be described in or are 
restricted to the following form of the induced displacements: 

u(x,y,z) = 0, v(x,y,z) = 0, w(x,y,z) = w(x,y) 

This form for the displacements leads to strains of the form 

ex= cy = cz = 0 

aw 
fyz = 8y' 

8w 
fxz =ax 

Differentiating each of these two nonzero strains with respect to the opposite variable and equating leads to 
the compatibility equation 

a1 a, 
----B. - ____!!. = 0 ay ax (Kl) 

The absence of the three extensional strains as well as the .:1}' shear strain implies the absence of the 
following stress components: 

CYx = CYy = CYz = Txy = 0 

623 
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Therefore the only nontrivial equilibrium equation is 

(K2) 

Equations (Kl) and (K2) are usually solved directly for elastic problems, also making use of the stress
strain relations 

Txz Tyz 
1 =- and 1 =-

xz G yz G (K3) 

The solution to this set of equations, Eqs. (Kl), (K2), and (K3), would normally take the form 

Txz = Txz (x, y) and Tyz = Tyz (x, y) (K4) 

However, for elastic-plastic problems, advantages occur upon inverting the variables and solving the 
problem on the stress plane, the Txz vs. Tyz plane, rather than on the physical plane, the x vs. y plane. The 
solutions will then involve mapping points on the physical plane onto the stress plane, which is sometimes 
called the "Hodograph Method" in other applications. 

INVERTING TO THE STRESS PLANE 

The stress equations. Eq. (K4), can be inverted to express the coordinates as functions ofthe stresses, or 

(KS) 

Taking the differentials of Eqs. (K5) and then substituting for the differentials of stress from Eqs. (K4) 
leads to two equations, which, upon noting that dx and dy are independent, become four equations. 
Performing some direct algebraic manipulation one can then show that Eq. (K2) becomes 

(K6) 

Similarly, Eqs. (Kl) and (K3) may be combined and inverted to give 

ax 8y 
---=0 
8Tyz 8Txz 

(K7) 

which applies only to the elastic region of any problem. 

STRESS FUNCTION SOLUTION FOR THE ELASTIC REGION 

Figure K.l shows the stress plane where the circle represents the yield surface for homogeneous isotropic 
yielding and points within the circle are the elastic region on this plane. For the solution within this elastic 
region, a stress function, <I>, is elected where 
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and 

a <I> 
y=-

OT:xz 
(K8) 

so that the equilibrium equation, Eq. (K6), is automatically satisfied and the elastic region compatibility 
equation, Eq. (K7), becomes 

which is the well-known Laplace's Equation. 

'¢j = 0 within yie.ld surface 

.... .j t 2. 
"t = "'z. T T7Z 

yield surfG.ce 

·k 

----L-------~------~------~~z 

Fig. K.1 

BOUNDARY CONDITIONS 

(K9) 

The boundary conditions for the solution of Eq. (K9) in the elastic region of the stress plane for typical 
crack problems, with stress boundary conditions on external surfaces, are dictated by the mapping of those 
external surfaces from the physical plane onto the stress plane, as will be illustrated. However, the boundary 
conditions for <J? at the elastic-plastic boundary are more subtle. Figure K2 shows an anisotropic yield 
surface (other than circular) with ds defined as an increment oflength along that surface at the point indicated 
by the stress vector, T. Further, the normal unit vector to the yield surface, n, and the tangent unit vector, s, and 
their components are shown on the stress plane. In addition the corresponding crack tip is shown on the 
physical plane in Fig. K2 with the plastic zone at its tip. The plastic slips must begin at the singularity of the 
crack tip forming a staircase of slips emanating at that tip. For elastic-perfectly plastic material (no hardening) 
the emphasized slip at an angle () must correspond to the point on the yield surface with the corresponding 
angle () because, as is well known in plasticity theory, plastic strains must be normal to the yield surface. 
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Stress Plane 

'/ie.ld surf<1c.e 

Physical Plane 

y 

ID~o=~~~~---+~--x 

Fig. K.2 

pldstic. zone 
r = R<e> 

slips 

From conditions on the yield surface it is noted that 

aTxz 
Sx =ny =--a;-, 

aTyz 
Sy = -nx =--a;-

Also on the physical plane 

Now the rate of change of the stress function along the yield surface may be written as 

dif> aif> aTxz aif> aTyz 
-=--+--
ds aT xz as aTyz as 

which upon relevant substitutions from Eqs. (K8), (KlO), and (Kll) give 

dif> ( ) - -ds = - xnx + yny = -r · n = 0 

K.4 

(KlO) 

(Kll) 

(K12) 
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since the vectors r and n are perpendicular. Therefore the boundary condition along the yield surface on the 
stress plane is that <I> is a constant, which may be arbitrarily chosen to be zero, thus 

<I> = constant = 0 ( on the yield surface) (K13) 

In addition, the radial coordinate on the physical plane from the crack tip to the elastic-plastic boundary 
may be denoted 

or 

R(B) = ~ = (- o<I>)2 +(o<I>)2 V xo --r Yo OT:xz OTyz 

R(O) = 
o<I> 
on (K14) 

From this expression, the physical radius of the plastic zone is determined along any radial slip line by the 
gradient of the stress function on the stress plane. 

Let us further invoke Neuber's observation that at a crack tip the stress singularity times the strain 
singularity of the field is always 1/r- For no hardening, the stress is a nonsingular, constant, T, along radial 
lines within the plastic zone. Therefore the strain along these radial lines must be determined by 

Ow 
"( =-=0 

rz or 

Consequently, the stresses and strains are completely known within the plastic zone once the stress 
function, <I>, is determined for the adjacent elastic region. The discussion now proceeds to the determination 
of <I>. 

MAPPING INDIVIDUAL PROBLEMS AND FULL BOUNDARY 
CONDITION DETERMINATION 

Figure K3 shows the example of a half plane with a crack oflength, a, perpendicular to its edge. The crack 
is along the x-axis with its tip at the origin making the edge parallel to the y-axis. The body is loaded with 
uniform shear stress, Tyz =To, at y = ± oo. 
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Physical Plane 0 0 
1 00 H 

plastic zone. 

A 

E 

F oo 

Stress Plane 

yield surfa.ce. 

~=0 

B 

Fig. K.3 

In addition, the stress plane is shown with a circular yield surface corresponding to isotropic yield strength, 
k, or the arc -? = T~ + Tffz = k2 . To complete the mapping, successive points around the boundary of the 
elastic region on the physical plane are labeled A, B, C, ... ,!,which correspond to similarly labeled points on 
the stress plane. For example, all along the upper crack surface is labeled AB, and Tyz = 0 as a load free 
boundary condition. At the comer at A it is entirely stress free, or Txz = 0, whereas the magnitude of this stress 
component gradually increases along AB, meeting the yield surface, Txz = -k, so that B is at the origin on the 
physical plane but at the yield surface on the stress plane. Note that where the plastic zone crosses the x-axis 
remote from the origin, labeled C on the physical plane, because of symmetry, Txz = 0 so that on the stress 
plane Tyz = +k. Similar to AB on the stress plane, DE occupies the Txz ( = +) axis from the origin to the yield 
surface. Further, for all boundaries at infinity on the physical plane corresponding to FGHI the stresses are 
Tyz = +To and Txz = 0, that is, all at the same point on the stress plane. It is also noted that points along EF and 
IA on the physical plane are on the vertical axis on the stress plane. The map is then completed and the elastic 
region is within the boundary, as described on the stress plane. Within that boundary the stress function, .:P, 
obeys Eq. (K9) or \72 .:P = 0 as indicated. It remains to express the boundary conditions on .:P on the stress 
plane. They are: 

a.) On the elastic-plastic boundary, BCD, Eq. (K13) specifies 

c:j>BCD = Q 
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b.) On AB and DE it is noted that 

Therefore integrating gives 

a<I> 
y = 0 = -- along Tyz = 0 

OTxz 

<I>AB = <I>nE = constants = 0 

where the zero values are required to avoid a discontinuity in the boundary condition as it passes through B 
and D on the stress plane. 

c.) On EF and IA it is noted that 

Again integrating this result gives 

a <I> 
x = -a=- along Txz = 0 

OTyz 

<I>IA = <I>cF = -aTyz + 0 

where the constants of integration are again both taken to be zero to avoid a discontinuity passing through A 
and C on the stress plane. 

These boundary conditions on <I> are noted on the stress plane map in Fig. K3 and it is left to solve for it 
within these boundaries by using Laplace's Eq. (K9). The final solution is left undone, as the object of this 
example is to illustrate the setting up of the problem for solution. The exact analytical solution to a similar 
problem shall now be given because of its special significance to small-scale yielding fracture mechanics 
assumptions. 

THE COMPLETE ANALYTICAL SOLUTION FOR SMALL-SCALE 
YIELDING 

A significant special case of the preceding example is that for which the free edge is removed to infinity 
giving an infinite region on the physical plane with a semi-infinite crack with its tip at the origin, as shown in 
Fig. K4. The loading on the boundaries as shown on Fig. K3 must approach zero but not without leaving 
significant finite stresses and strains, causing the usual singular effects at the crack tip. The physical plane and 
mapping to the stress plane are shown in Fig. K4 for this case. Note that the boundary condition for <I> 

exhibits singular behavior at the origin of the stress plane. 
The stress function for this problem is 

(KlS) 

Note that this stress function satisfies Laplace's Equation and gives zero values on the yield surface and 
horizontal axis of the stress plane except at the origin where a singular spike in value occurs. Differentiating 
this stress function using Eqs. (KS), the elastic-plastic boundary on the physical plane is described by 

(K16) 
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Figure K.4 

which is a circle directly ahead of and just touched by the crack tip. Further, it is found that larger circles with 
the same center on the physical plane correspond to semi-circles centered at the origin within the elastic region 
on the stress plane. For mapping corresponding points from the physical plane to the stress plane on these 
circles, the angular measure from their centers differs by the factor 2. Consequently, stresses in the elastic 
region may be most simply expressed in terms of new coordinates, r, e, measured on the physical plane from 
the center of the plastic zone given by Eq. (K16), and they are 

A . (j 
Txz = ---sm-

V2if 2 

(K17) 

Comparing these equations with Eq. (3) in Part I of this handbook, it is noted that exactly the same form of 
elastic stress field is found for the purely elastic analysis except that here the coordinates are taken at the center 
of the plastic zone instead of at the origin. That means that the plastic zone embeds itself within the same 
elastic stress field as that for the purely elastic case, except that the "effective (or equivalent) elastic crack 
length" is the physical crack length plus the plastic zone radius. These same "plastic zone corrections" to 
crack size, as suggested by Paris 1957 and later developed by Irwin (1960b ), have been used without full 
analytical justification for many years for Mode I linear-elastic fracture mechanics applications. Although this 
analytic justification is shown only for a Mode III case here, it adds significant credibility for the concept 
applied to other modes. Indeed, it shows that a small-scale plastic zone embeds itself within the elastic crack 
tip stress field without significantly disturbing the form of that field but with an effective crack size including 
half the plastic zone. 
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EXAMPLES OF OTHER MAPS 

Physical Plane 

'I 

0 J :I 1-\ 

~0 a 
K B + ® D )( 

t,® a. 
E F 

Stress Plane 

I = a(Txz-'L.l 

i=O 

Fig. K.5 

For the example shown in Fig. K5, it is noted that 
a.) On CD andAK: 

b.) On HIJ and EFG: 

a<I> 
y = 0 = -- Or <J>cD = <J>AK = C1 = 0 

OTxz 

o<J> <J>EFG = a(Txz- Too) 
y=+a= -- or 

- OTxz <I>mJ = -a(Txz +Too) 

with simultaneous points DE and KJ at T yz = 0, T xz = ±Too. 
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Effect of Angled Sharp Notches: 

ex., 

Effect of Square Ended Notches: 

Effect of Discrete Limited Slip Directions: 

For Plane Anisotropic Elastic Behavior: 

Tyz = Ayx'"'(xz + Ayy'"'(yz with Ayx = Axy 
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results in replacing Laplace's Equation for the elastic region by 

For Power Hardening Plasticity Beyond an Elastic Range: 

---

1-N
xo =--R 

l+N 

(See Rice 1968c for details and numerical solutions.) 

K.12 
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APPENDIX L 

TABLE OF COMPLETE ELLIPTIC 

INTEGRALS, K(k) AND E(k) 

k =sin a 

K E ao K E ao K E 

1.5708 1.5708 30 1.6858 1.4675 60 2.1565 1.2111 
1.5709 1.5707 31 1.6941 1.4608 61 2.1842 1.2015 
1.5713 1.5703 32 1.7028 1.4539 62 2.2132 1.1920 
1.5719 1.5697 33 1.7119 1.4469 63 2.2435 1.1826 
1.5727 1.5689 34 1.7214 1.4397 64 2.2754 1.1732 

1.5738 1.5678 35 1.7312 1.4323 65 2.3088 1.1638 
1.5751 1.5665 36 1.7415 1.4248 66 2.3439 1.1545 
1.5767 1.5649 37 1.7522 1.4171 67 2.3809 1.1453 
1.5785 1.5632 38 1.7633 1.4092 68 2.4198 1.1362 
1.5805 1.5611 39 1.7748 1.4013 69 2.4610 1.1272 

1.5828 1.5589 40 1.7868 1.3931 70 2.5046 1.1184 
1.5854 1.5564 41 1.7992 1.3849 71 2.5507 1.1096 
1.5882 1.5537 42 1.8122 1.3765 72 2.5998 1.1011 
1.5913 1.5507 43 1.8256 1.3680 73 2.6521 1.0927 
1.5946 1.5476 44 1.8396 1.3594 74 2.7081 1.0844 

1.5981 1.5442 45 1.8541 1.3506 75 2.7681 1.0764 
1.6020 1.5405 46 1.8691 1.3418 76 2.8327 1.0686 
1.6061 1.5367 47 1.8848 1.3329 77 2.9026 1.0611 
1.6105 1.5326 48 1.9011 1.3238 78 2.9786 1.0538 
1.6151 1.5283 49 1.9180 1.3147 79 3.0617 1.0468 

1.6200 1.5238 50 1.9356 1.3055 80 3.1534 1.0401 
1.6252 1.5191 51 1.9539 1.2963 81 3.2553 1.0338 
1.6307 1.5141 52 1.9729 1.2870 82 3.3699 1.0278 
1.6365 1.5090 53 1.9927 1.2776 83 3.5004 1.0223 
1.6426 1.5037 54 2.0133 1.2681 84 3.6519 1.0172 

1.6490 1.4981 55 2.0347 1.2587 85 3.8317 1.0127 
1.6557 1.4924 56 2.0571 1.2492 86 4.0528 1.0086 
1.6627 1.4864 57 2.0804 1.2397 87 4.3387 1.0053 
1.6701 1.4803 58 2.1047 1.2301 88 4.7427 1.0026 
1.6777 1.4740 59 2.1300 1.2206 89 5.4349 1.0008 

1.6858 1.4675 60 2.1565 1.2111 90 00 1.0000 

635 
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The definitions of the complete elliptic integrals of the first kind, K(k), and the second kind, E(k), are as 
follows: 

1rlz 
K(k) = 1 

0 V 1 - k2 sin2 <p 

drp 

and 

Approximate Formulas for E( k); k = sin a 

[ 
165]

1h E(k) = 1 + 1.464(cosa) · 

Accuracy: 0.1% 
References: Rawe 1970; see also Merkle 1973, Raju 1979 

E(k) = "!._. _1_. 4- 0.18.A 
2 1 +.A 4- .A2 

where .X= tan2 I 
Accuracy: 0.05% 
Reference: Tada 2000 

4 



X 

1.000 
1.025 
1.050 
1.075 
1.100 
1.125 
1.150 
1.175 
1.200 
1.225 
1.250 
1.275 
1.300 
1.325 
1.350 
1.375 
1.400 
1.425 
1.450 
1.475 
1.500 

APPENDIX M 

A TABLE OF GAMMA 

FUNCTION r (X) 

r(x) X 

1.00000 1.500 
.98617 1.525 
.97350 1.550 
.96191 1.575 
.95135 1.600 
.94174 1.625 
.93304 1.650 
.92520 1.675 
.91817 1.700 
.91192 1.725 
.90640 1.750 
.90160 1.775 
.89747 1.800 
.89400 1.825 
.89115 1.850 
.88891 1.875 
.88726 1.900 
.88618 1.925 
.88566 1.950 
.88567 1.975 
.88623 2.000 

Values of r ( x) for x < 1 and x > 2 are calculated by the following formula: 

r(x+l) 
r(x) = or r(x) = (x- l)r(x- 1) 

X 

Examples: 

2) r(3.65) = 2.65 x r (2.65) 

= 2.65 X 1.65 X r (1.65) 

= 2.65 X 1.65 X 0.90012 = 3.93577 

637 

r(x) 

.88623 

.88729 

.88887 

.89094 

.89351 

.89657 

.90012 

.90414 

.90864 

.91361 

.91906 

.92499 

.93138 

.93825 

.94561 

.95345 

.96177 

.97058 

.97988 

.98969 
1.00000 
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PROPERTIES OF GAMMA FUNCTION r(x) 

Defmition: 

r(x) = { 

*when xis complex; Re(x)>O 
** real or complex 

Basic Formulas: 

lim 
n~oo 

1 x-1 n.n 
x(x+ 1)(x+2)······(x+n-1) 

r(x+ 1) =xr(x) 

r(n) = (n- 1)! ( n =positive integer) 

7r 
r(x)r(1 -x) = -.-

Slll7rX 

r(x)r(x+D = 2't_1 r(2x) 

rG) = ,;Jr, r(1) = 1, rG) = V: 

For crack problems, the following formulas are useful. 

forx:o::o* 

for any x** 

(1) 11 
2a+1 2 f3 ( 111 

a (3 ) 
0

x (1-x)d.x= 20 x(1-x)d.x 

"h 
= 1 (sin0)2a+1 (cos0)2f3+ 1 dO 

= r(a + 1)r(,6 + 1) (= !B(a + 1, ,6 + 1)) 
2r(a + ,6 + 2) 2 

( a!,6! ) = when a, ,6 = positive integers 
2(a+,6+1)! 

M.2 



M.3 

(2) Special cases: 2a + 1 = "(, f3 = -! 
or a = - ! , 2(3 + 1 = "! 

when "( = n (n = positive integer) 

{ 

= (n-l)(n-3)(n-5) ······ 3.1 .1!: 
n (n-2)(n-4) ······ 4.2 2 

_ (n-1 )(n-3)(n-5) ...... 4.2 
- n (n-2)(n-4) ······ 3.1 

A Table of Gamma Function r(x) 639 

(n = even) 

(n = odd) 
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Additivity of crack stress fields 

and K values, 22-23 
Additivity principles, 23 

also see superposition, Green's function 
method 

Airy stress functions, 17, 28, 31 
Algebraic sum of K, 13 

also see superposition 
Alternate expressions 

for crack-tip stress fields, 6 
Alternating methods, 197, 199, 206, 322, 

323, 410-413 
see also successive boundary stress 
correction method, succesive stress 
adjustment (relaxation) 

Angle of twist, 640 
Anisotropic 

elastic bodies, 13, 633, 
homogeneous (rectilinear), 513 
linear-elastic crack-tip stress fields, 513-514 
materials, 21 

Anisotropy, 1 0 
Anti-plane shear, 623 

see also Mode III, pure shear 
Arc-shaped specimen, 65 

ASTM E-399 standard specimens, 65 
ASME Nuclear Pressure Vessel Code, 601 
ASTM E-399, 62, 65, 489 
Asymptotic approximations, 41, 47, 52, 55, 

234,236,256,261,390,393,395,396, 
399,401 

Asymptotic interpolations, 67, 68, 72-74, 
76-78,215,239,241,244,260,264, 
265,278,282,283,329,330,400 
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Beam (bending) theory, 231, 266, 267, 272, 

275,282 
Bend angles, 475, 476 

also see rotations, kinks 
Bend specimens 

see single edge cracked specimen, pure 
bending specimen, three-point bend specimen 

Blunting of crack, 8, 15 
Body force method, 264, 296 
Body force problems, 505 
Boundary collocation methods, 23-24, 42, 52, 

53, 55, 56, 58, 59,61,63-6~7~219, 
221,232,235,287,289,291,292,296, 
298,299,308,309 

Boundary collocation points, 24 
Boundary conditions, 20, 23, 24, 625-62 
Bounding techniques, 603 
Boussinesq-Papkovich potentials, 371 
Bueckner displacement fileds, 502, 505 
Bueckner-type singularities, 500-502, 508, 

509, 512 
Burgers vector, 549 
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c* (time dependent J), 622 
Cantilever-beam specimen (or configuration), 

15,489 
Castigliano's theorem, 494 
Cauchy-Riemann equations, 18 
Center cracked test specimen, 40-45 
Charpy impact test, 620 
Circular cracks, 598, 599 
Circular holes, 294, 295, 313, 609 
Clip gages, 495 
Closed-form solutions, 17, 23 
Collinear dislocations, 550, 579 
Compact tension test specimen, 61-63 

ASTM E-399 standard specimen, 62 
Compatibility, 490 

strain, 17 
stress, 490 

Compatibility equations, 27, 623, 625 
Complete elliptic integrals 

of the first kind, 384, 635 
of the second kind, 384, 600, 635 
approximate formulas, 636 
definitions of, 636 
Table of, 635 

Complete shell solutions, 475, 476 
Complex potentials, 167, 313 

expansions of, 40, 230, 256, 260, 263 
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Complex stress potentials 
expansions of, 227, 232, 233, 272, 274, 

282, 283, 286-288, 309-312, 331, 332, 
456 

Compliance, 487 
effective, 492 
elastic, 11 
nonlinear, 614, 615, 618, 621 

Compliance calibrations, 15, 26, 42, 487-492 
experimental (by finite element 
computations), 26 

Compliance methods, 42 
Concentrated displacements, 548, 552, 553 

also see nucleus of displacement 
Concentrated force K solutions, 494 

also see splitting forces, wedge forces, 
Green's functions 

Configuration effects, 595 
Configuration functions, 593 
Conformal mapping, 293-295, 304-306, 

314,316,318,324-326,329,330 
Conic section, 9 
Conjugate function method, 80 
Conjugate (pairs of) roots, 513, 514 
Constant (or fixed) 

displacements, 614 
loads (forces), 493, 494 
also see fixity 

Constraint against contraction, 14 
Constraint conditions, 598 
Contour integral, 490 

path-independent, 490, 611 
Corrosion cracking, 2 
Cracks, 2, and throughout the book 

cicular, 598, 599 
displacement-prescribed, 547, 562, 564, 579 
also see dislocations 
edge, 594-596 
elliptical, 599, 600 
emanating from hole, 609-610 
fatigue 
see fatigue cracking 
in residual stress fields, 529-545 
leading edge of, 2, 22 
Modes I, II, III, 2, and throughout the 

book 
part-through surface, 601-602 
penny-shaped, 598 
stop drilled, 8 
stress (or traction)-prescribed, 547, 550, 

562, 573, 578, 579 

through-the-thickness, 15 
tunnel, 598, 599 
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Crack-absent stress distributions, 28, 529, 
562, 563 

also see no-crack stress fields 
Crack arresters, 515 
Crack -arresting effects, 516 
Crack closure derivation of G, 12, 15 
Crack extension, 11, 13, 17,22 

force, 11, 487 
processes, 15 
resistance curves, 587 
also see J-R curves, R-curves 

Crack front, 11, 12 
Crack growth 

see creep, }-controlled, fatigue 
Crack growth rates 

cyclic, 622 
fatigue, 622 
subcritical, 622 

Cracking 
corrosion, 2 
fatigue, 2, 622 

Crack length 
see crack size 

Crack openings, 43, 48, 53, 56, 59, 62, 178, 
391,394,398,403,405,407,409 

Crack opening areas, 36, 43, 70, 125, 135, 
136, 139, 141, 144, 146, 147, 149, 151, 
154, 156, 157, 159, 171, 177, 181, 186, 
188,194,196,198,200,203,205,207, 
213-217,326,470,472,474,476,478-
481,483,485,486,529-538 

Crack opening displacements, 31, 529 
Crack (opening) profiles, 33, 37, 88, 90, 93, 

99, 102, 105, 108, 111, 113, 115, 118, 
125, 135, 136, 139, 141, 146, 147, 154, 
157, 159, 171, 177, 181, 186, 188, 194, 
196,213,378,564,568,572 

Crack opening shapes, 342, 344, 348 
also see crack opening profiles 

Crack opening stretch, 15, 433, 491, 614 
Crack propagation, 2 
Crack sizes, 5, 25 

determinations by compliance, 491 
increment, 26 

Crack stability, 621 
Crack surfaces, 2, and throughout Part I and 

Appendices 
Crack surface interference 

see surface interference 
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Crack surface contact, 33 
Crack-tips, 2, and throughout Part I and Appendices 
Crack-tip (deformation, displacement, strain, stress) 
fields, 2, and throughout Part I and Appendices 

alternate expressions of, 6-7 
for linear-elastic bodies, 2-7 
for power-hardening materials, 616 

Crack-tip stress field environments, 5 
Crack-tip stress (field) intensity factors, 4 

also see stress intensity factors 
Crack-tip plastic (or non-linear) zone, 16, 22 
Creep crack growth, 622 
C-shaped specimen 

see arc-shaped specimen 
Cuspidal ends or tips, 37 
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DCB specimen 

see double cantilever specimen 
Debonded fibers, 429, 430 
Defects, 2 
Deformation theory of plasticity, 612, 615, 

617, 621, 622 
Delta function, 552 

also see unit impulse function 
Dimensional analysis, 593-594 
Discontinuities, 547, 551 
Dicrete (force) systems, 13 
Disk-shaped compact specimen 

see round compact specimen 
Dislocations, 547-579 

and cracks, 547-579 
edge, 547, 549 
screw, 547, 
of arbitrary shapes, 552 

Dislocation theory, 438 
Dislocation distributions, 261, 263 
Displacements, 31, 43, 48, 49, 53, 54, 56, 59, 
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Displacement discontinuities, 547, 550 
Displacement fields, 3, and throughout Part I 

and Appendices 
Displacemnt measurements, 17 
Displacement modes, 3 

also see Modes 

Distributed boundary tractions, 11 
Distributed force systems, 13 
Distributions of stresses, 2 

also see stress distributions 
Disturbance of crack, 8 
Double cantilever (beam) specimen, 15, 489 
Double edge cracked strip, 31, 596 
Double edge notch test specimen, 46-51 
Ductile materials, 581 
Dugdale(-Barenblatt) model, 432, 491 

E 
Edge dislocations, 547, 549 
Edge-sliding mode 

see Mode II 
Effective crack size, 16, 491, 583, 587, 630 

see plastic zone size (r Y) correction 
Effective compliance, 492 
Elastic closure, 12 
Elastic compliance, 11, 497 
Elastic energy, 11 
Elastic materials 

anisotropic, 21 
isotropic, 21 
orthotropic, 21 

Elastic-perfectly plastic, 616, 621, 623, 625 
Elastic-plastic boundary, 625, 627 
Elastic-plastic fracture mechanics, 15, 611 
Elastic-plastic models, 492 

analyrical, 492 
Elasto-plastic pure shear analysis, 623-634 
Electrical potential calibration, 80 
Element sizes, 26 
Elevations of stresses, 2 
Elliptic integrals 

see complete elliptic integrals 
Elliptical cracks, 384-388, 599, 600 
Elliptical holes, 8, 10 
Elongation, 398 
End radius of notches, 8 
Energy balance, 11, 247, 268, 269, 283, 416, 

418,420,422,423,426,428-430 
Energy disappearance 

at crack tip singularity, 490 
Energy rate (or balance) analysis 

of crack extension, 11-12 
of effects of flaws, 11 

Equivalence 
between J and G, 491 

Equilibrium, 16 
Equilibrium equations, 17, 27, 624, 625 
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Extension, 4 70 

F 
Fatigue crack growth, 622 

under cyclic plastic conditions, 622 
Fatigue cracking, 2, 622 
Fiber pullout problem, 429 
Finite element mesh, 26 
Finite element methods, 25-26, 42, 46, 52, 

410,412,500,505,611 
Fixed displacements or loads 

see constant displacements or loads 
Fixity of displacement, 615 
Flaws, 3, 11 
Flaw-size effects in fracture, 5 
Flux of energy, 490 
Fourier series expansions, 366, 367 
Fourier transform, 42, 148, 247, 251, 256, 

262,269,272,274,275,277,279,281, 
388, 561 

Fracture, 2, 5 
Fracture mechanics, 14, 15, 547 

see also linear-elastic fracture mechanics, 
elastic-plastic fracture mechanics 

Fracture mechanics stress analysis, 15 
Fracture process(es), 5, 
Fracture process zone, 15, 22, 491 
Fracture surfaces, 22 
Fracture toughness 

analysis, 587 
instability, 587 

Free boundary conditions, 20, 23 
Free-surface effects, 595 

G 
G, 11, and throughout the book 

as energy made available for crack 
extension, 11 
as generalized force, 11 
as point quantity, 11 
see crack extension force, total energy rate 

Gamma function, 117, 148-151,206,207, 
349 

definition, 637 
properties of, 638-639 
Table of, 637 

Generalized force, 11 
Generalized Hooke's law, 513 
Generalized plane stress, 14 

also see plane stress 
Green-Gauss theorem, 612 

Subject Index 

Green's functions, 497, 515, 529, 548, 552, 
553, 555, 562, 563, 572, 576-579, 
610 

also see concentrated force solutions, 
splitting forces, wedge forces 

Green's function methods, 13, 23, 52, 55, 58, 
598 

also see integrations 
Griffith crack, 23, 560, 561, 569, 573 
Griffith crack problem, 21 
Griffith energy rate, 497, 612 
Griffith theory, 11 
Griffith-Irwin theory, 11 

H 
Hankel transform, 355 
Higher-order terms, 3, 4 
History dependence, 622 
Hodograph method, 624 
Holes 

circular, 294, 295, 313, 609 
elliptical, 8, 10 

Hooke's laws, 14, 17 
for anisotropic material, 513 
generalized, 513 

HRR (crack tip) plastic field equations, 616-
618 

Hypergeometric series, 561 

I 
I, II, III (subscripts), throughout the book 

see Modes I, II, III 
Imaginary part, 18, 19, 20, 549 
In-plane bending, 31, 33, 37,445 
Influence function, 245 
Input work, 490 
Integral equations, 24, 42, 162, 164, 193, 

206,214,221,224,231,239,241,244, 
296,323,326,402-409,423,428,478, 
486, 547, 561 

Integral transform, 193, 195, 204, 212-214, 
218,219,221,237,242,245,326,328, 
342,346,347,355,385,392,394,398, 
402-409, 425, 485 

Integrations, 89, 91-93, 107, 109-111, 117, 
118, 130, 142, 146, 148-153, 158, 190, 
191, 199, 201, 203, 206-208, 210, 211, 
335-340,345,347-357,360,361,370, 
373-375, 515, 529-538, 542-545, 548, 
553, 554, 561-563, 572, 573, 577, 578, 
597, 610 



Subject Index 

also see Green's function method, super
position 

lntensitiy 
of linear-elastic stress distribution, 4 
of load transmittal, 4 
of local stress field, 2 
of stress(-strain) singularity, 620 

Interactions between modes, 12 
Interference of closure, 33 
Internal cracks, 33 
Invariants, 21 
Isotropic materials, 21 

J 
J-controlled crack growth, 617, 619, 621 
J-integral, 26,491, 611-622 

as elastic-plastic analog to G, 15 
field equation interpretation of, 616 
for compact tension specimen, 619 
for double cantilever beam specimen, 620 
nonlinear compliance definition of, 614-616 
as nonlinear counterpart of G, 11 
physical interpretation of, 612 
time rate dependent, 622 

J(-integral)-R curves, 617, 621 
also see crack extension resistance curves, R
curves 

K 
K, KP K1P Km, 4, and throughout the book 

see stress intensity factors 
as fracture correlation parameters, 5 

K estimates 
engineering estimates, 593-610 
from finite element methods, 25-26 

Kinks (at cracked section) 
see rotations, bend angles 

L 
Laplace's equation, 625, 629 
Large-scale yielding, 16, 433, 587 
Laurent's expansion 

see complex (stress) potentials 
Leading edge of crack, 3, 22 

straight, 488 
Leading terms of crack-tip stress fields, 4 
Least squares fitting, 34, 41, 47, 53, 56 
LEF11, 581, 583, 586, 587, 589, 591 

also see linear-elastic fracture mechanics 
Length of closed portion, 33 

Length of closure, 34, 569, 571 
Length of contact, 564, 565, 567, 568 
Length of normal, 384, 600 
Linear -elastic 

analysis, 16 
behavior, 17,487 
crack-tip (stress) fields, 2, and 

throughout Part I and Appendices 
fracture mechanics, 14, 15, 16, 581, 630 
stress analysis, 2, and throughout Part I 

and Appendices 
stress distributions, 4 
stress fields, 2, and throughout Part I and 

Appendices 
Load paths, 4 

redistribution of, 4 
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Load (point) displacements, 11, 12, 26, 487, 497, 
Load transmittal, 4 
Loading (force) systems, 13 
Local elevations of stresses, 2 
Local stress fields, 4 
Local(ized) yielding, 583 

M 
11apping, 624, 625, 627-630 
11apping collocation method (technique), 

237,298 
11apping function methods, 46, 52, 264, 

289,290 
11athematical models, 16 
11ellin transform, 239, 244 
11odes 

of crack surface displacement, 2 
11odes I, II, III, 2, and throughout the book 
11oments of inertia, 416, 418, 420, 422 
11ultiple integral equations, 547 
11uskhelishvili's method, 83, 84, 100, 128-130, 

162,165,166,169,227,457,458,460 

Negative KI' 31 
Negative openings, 31 

N 

also see surface overlapping 
Neuber-Papkovich potentials, 369, 389 
No-crack stress fields, 23, 25 

also see crack absent stress distributions 
Nonlinear analyses, 16 
Nonlinear compliance, 614, 615, 618, 621 

also see compliance 
Nonlinear effects, 2 
Nonlinear elastic stress analysis, 611-613, 
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Nonlinear zone, 16 
Nonlinearlity, 2, 4, 8, 583 
Non-self-equilibrating loadings, 514 
Non-small-scale yielding, 586 
Notches, 2 

slender, 8, 10 
Notched round bars, 488 
Notch tips, 8, 9 
Nucleus of displacement, 552 
Numerical integrations, 24 

0 
One function approach 

see Westergaard one function approach 
Openings, 90, 93, 108, 111, 125-135, 139, 

141, 144, 146, 147, 149, 151, 157, 159, 
171, 181, 186, 198,201,203,205,207, 
214-217,342,344-350,352-354,356-
359,361,362,462,463,531-538,542-545 

Opening displacements, 64 
see also crack openings 

Opening displacements 
of crack surfaces, 494-495 
near crack tip, 495 

Opening mode 
see Mode I 

Opposing semi-infinite cracks, 33 
Orthotropic materials, 21 
Overlapping, 31, 32, 154 

also see surface overlapping, surface 
interference 

p 
Papkovich-Neuber potentials, 334, 341, 344 
Parabola, 9, 35 
Parabolic arc cracks, 320 
Parameters, 2, 4 
Parametric angle, 384, 600 
Paris' equation, 43, 50, 54, 57, 60, 67, 70, 72, 

73, 74, 99, 103, 106, 113, 115, 118, 126, 
135, 139, 144, 146, 149, 160, 172, 193-
196, 198, 201-203, 207, 213-215, 342, 
343,348,349,352,372,374,376,378, 
380,392,394,398,400,471,473,475, 
476,478,479,482,484-486,529-538 

Paris' formula, 602 
Partly closed cracks, 31, 32 
Path-independence, 490, 491 
Path-independent (contour) integral, 611, 612 
Penny-shaped cracks, 598 

also see circular cracks 

Subject Index 

Periodic (array of) cracks, 170-192 
Periodic (array of) dislocations, 551, 554, 555, 558, 

559 
Physical plane, 624-632 
Piecewise continuous, 553, 554 
Pinching forces (loads), 511, 515-518 

crack arresting effects of, 516 
Plane-extensional problems, 3 
Plane strain (conditions), 3, 14, and 

throughout the book 
mathematical definitions of, 14 

Plane strain and plane stress 
for fracture mechanics purposes, 14-15 
in fracture mechanics terminology, 14 

Plane strain constraint 
see constraint against contraction 

Plane strain fracture, 14, 15 
Plane stress (conditions), 4, 14, and 

throughout the book 
mathematical definitions, 14 

Plane stress fracture , 14 
Plastic collapse loads, 581, 589-591 
Plastic design, 621 
Plastic limit loads, 581 
Plastic slips 

see slips 
Plastic zone, 14, 15, 16, 625, 626 
Plastic zone instability, 581, 582 

analysis, 581-592 
concept, 581-592 
failure criterion, 581 

Plastic zone size, 14, 15, 432, 433, 583 
correction (adjustment), 16, 581, 583, 630 
index, 16, 587 
also see effective crack size 

Plasticity, 2, 4, 8, 15 
also see nonlinear effects, nonlinearity 
theory of, 14 

Point of separation (loss of contact) 
of surfaces, 33, 35, 556, 557, 562, 564, 

565, 567 
Point quantitiy 

Gas a, 12 
Poisson's ratio, 4 
Polar moment of inertia, 430 
Positive branch, 24 
Potential energy change, 11 
Power hardening, 634 
Power series, 495 
Pressure vessels, 581, 582, 589 
Principal stresses, 21 



Subject Index 

Profile of crack 
see crack opening profile 

Progressive separational process, 17 
Proportiona1loading, 37 
Proportional straining, 617 
Punch problems, 168 
Pure bending specimen, 55-57 
Pure shear, 3, 513, 514, 623 
Pyramid-shaped distribution, 359 
PZI 

see plastic zone instability 

R 
Ramberg-Osgood relation, 617 
R-curves, 618, 621 

also see crack extension resistance curves, J
R curves 

Real part, 18, 19, 20, 549 
Reciprocal theorem, 497, 499 
Reciprocity, 88, 99, 103, 106, 113, 139, 178, 

182, 187, 342-344, 376, 513 
Redistribution of stresses 

due to cracks or notches, 2 
Redistribution of load paths, 4 
Relationships between G and K, 12-13, 490-

491,493 
Relative displacements 

see displacements 
Relative rotations, 496 

ofarms, 620 
also see rotations 

Residual stresses, 505, 529 
Rice's analysis 

for pure bending, 618-620, 
Rice's J-integral, 611 

also see J-integral 
Rigid wedges 

see wedges 
Ring load, 464 
Roof-shaped distribution, 358 
Rotating discs, 243, 246 
Rotations, 70, 103, 109, 115, 219, 220, 380, 

394,400,471,473,537,538 
Round compact specimen, 64 
Rules for superposition for K and G, 13 
r y - correction 

see plastic zone size correction 

s 
Sanders' solutions, 471, 473 

also see complete shell solutions 

Self-balanced (equilibrating) stresses, 488, 489, 
594-596 

Semicubical parabora, 35 
Semi-elliptical arc cracks, 320 
Semi-major axis, 9 
Semi-minor axis, 10 
Sensitivity to flaws, 2 
Separations, 15 
Separation profile, 35 
Series expansion, 495 

also see complex (stress) potentials 
Shells 

cylindrical, 581, 582 
spherical, 581, 582 

Shell parameter, 582 
Simple beam theory, 416, 418, 420, 422, 489 

also see beam (bending) theory 
Simple radial stresses, 226, 229 
Single edge cracked strip, 31, 33, 505, 507 
Single edge notch test specimen, 23, 52-54 
Single stress function approach, 20 

also see Westergaard one function approagh 
Singular integral equations, 55, 70, 71, 231, 

382,383,390 
Singularities 

Bueckner-type, 500-502 
inverse square root, 4, 22 
strength of, 4 

Skew-symmetric fields, 2, 3, 503 
Slender ellipses, 10 
Slender notches, 8-10 

and stress concentrations, 8-11 
Slips, 625, 626, 633 
Small scale yielding, 2, 5, 14, 15, 16, 432-

434,583,622,629 
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effects of, on linear-elastic fracture mechanics, 16 
Smooth separation of surfaces, 36 
Software, 676 
Solid mechanics, 14 
Splitting forces, 22, 529 

also see concentrated forces, Green's 
functions, wedge forces, 

Spot weldings, 515 
Stability analysis, 581 
Stamp problems, 377, 379, 381 
Stiffness matrix, 26 
Strain compatibility, 17 

also see compatibility equations 
Strain energy, 11, 15, 487, 493, 494 

density, 490 
reduction of, 11 
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Strain-path independent, 490 
Stress analysis, 2, and throughout Part I and 

Appendices 
Stress compatibility, 490 

also see equilibrium equations 
Stress concentrations, 8-10 

from stress intensity factors, 8-11 
Stress concentration factors, 112, 114, 124, 

153,204,234,256,264,365,377,379, 
381 

Stress concentration theory, 10 
Stress distributions, 2, and throughout Part I and 

Appendices 
surrounding a crack, 4 

Stress fields, 2, and throughout Part I and 
Appendices 

Stress field energy, 25 
density, 21 

Stress-free boundaries, 2 
Stress functions, 19, 21, 624-629 

see also Airy stress function, Westergaard 
stress functions 

Stress function methods, 17-22 
Stress function surface, 632 
Stress intensity factors ( K, K" K," Km ), 4, and 

throughout the book 
engineering estimates of, 593-610 

Stress plane, 624-632 
Stress relaxation, 303 
Stress removal, 24 
Stress-strain relations, 27 
Stress(-strain) singularity, 4, 33, 583 

intensity of, 620 
inverse square root, 22 

Strip yield models, 431-467, 491, 614 
Strip yield model analysis, 36, 432-433 
St. Venant's principle, 596 
Successive boundary stress correction 

method, 24-25, 
Successive stress adjustment, 197, 456 
Successive stress relaxation, 193, 454 
Superposition, 13, 33, 34, 37, 95, 97, 104, 

127, 132, 140, 141, 147, 160, 174, 202, 
204,205,209,216,222,223,315,317, 
358,359,362,364,386,414-444,446-
455,459,462-467,505,515,529,536, 
550, 555, 558, 562, 569, 573, 576, 594, 
596 

Superposition method, 33 
Superposition of G and K results, 13 
Surface contact, 33 

Surface cracks, 600-608 
almost semi-elliptical, 602-604 
semi-elliptical, 600-604 
irregular, 604-607 
part-through, 601 

Surface interference, 31, 33, 35, 155 
effect of, 31-38, 155 

Surface overlapping, 31, 33, 36 
Symmetric axis, 33 
Symmetric fields, 2, 3, 503 
System-isolated condition, 12, 487 

T 
Tearing instability theory, 618, 621 
Tearing mode 

see Mode III 
Theory of elasticity, 3, 14 

two-dimensional, 3 
Theory of plasticity, 14 
Thermal stress problems, 505 
Three-dimensional potential 

Subject Index 

functions, 363, 385-388 
Three-dimensional problems, 2, and 

throughout Part I and Appendices 
Three-point bend test specimen, 58-60 
Through-wall cracks 

in shells, 581, 582, 587, 589 
circumferential, 581, 582, 590 
longitudinal, 581, 582, 583 

Total elastic energy, 11 
Total strain energy, 11 
Total energy rate (G), 12 
Traction-free surfaces, 28 
Transverse loads, 515 

also see pinching loads 
Two-dimensional problems 

plane-extensional (Modes I & II), 2 
pure shear (or torsion) (Mode III), 2 
and throughout the book 

Two-step approach (or process), 23 
also see Green's function method, 
superposition 

Tunnel cracks, 598, 599 

u 
Unified formulation for in-plane 

two-dimensional problems, 26-27 
Unit impulse function, 552 

also see delta function 
Unit step function, 552 
Unloading, 613, 622 



Subject Index 

Umestricted plastic flow, 581, 589-591 
Unstable crack growth, 581 

Vertical displacements 
see displacements 

Virtual 
displacements, 490 
forces, 493, 494 

v 

increment of crack area, 487 
Void growth and coalescence, 15 
Volterra dislocations, 54 7-549 
Volumes of crack, 342-350, 352-354, 356-

362,391,397,542-545 

w 
Wedges, 94, 95, 120, 122, 161, 163, 547, 

548, 557, 560-565, 568, 571, 573-575 
Wedge forces, 445, 596, 599 

also see concentrated forces, Green's 
functions, splitting forces 

Wedge force solutions, 596-598 
also see concentrated force solutions, Green's 
functions 

Weight functions, 497-512 
closed-form, 503-504, 508-512 

Weight function displacements, 502, 505, 
507, 510 

Weight function method, 52, 55, 346, 497-512 
Westergaard one function approach, 18 

completeness of, 27-31 
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Westergaard stress functions, 28, 31, 82, 85-
91, 94-98, 101, 107, 109, 111, 114, 121, 
123, 124, 131, 132, 134, 137, 138, 140, 
154, 162, 164, 170, 172-174, 176, 178, 
180, 182, 184, 185, 187, 189, 193, 195, 
197,199,204,221,224,226,229,247-
249,250,253-259,262,264,270,434, 
438,446,452,503,534,535,547-579 

Westergaard Z functions, 22 
Work done in elastic closure, 12 
Work-producing displacements, 499 

y 
Yield criterion, 16 
Yield surfaces, 625-629 
Yield zone, 16 

shape of, 16 

z 
Z functions, 21, 22, 24 

see Westergaard stress functions 
Zone of plasticity, 14 



FREE SOFTWARE (SMARTCRACK-LITE) 

Free software (SmartCrack-Lite) by Engineering Mechanics Technology, Inc. is available to purchasers of 
this book as a supplement to this Handbook upon request. A description of this software can be found on the 
following page. 

This software is not an ASME product, but by special arrangement with the developers, purchasers of this 
book can request free copies by contacting: 

Engineering Mechanics Technology, Inc. 
4340 Stevens Creek Blvd., Suite 166 
San Jose, CA 95129 
(408) 247-9274 (PHONE) 
(408) 247-9272 (FAX) 
dharris@emtinc.com (E-MAIL) 
www.emtinc.com (WEB ADDRESS) 

Proof of purchase, a copy of the invoice or packing slip that comes with the book, will be required to obtain 
the software. This software is owned by Engineering Mechanics Technology, Inc. 

(This is not an endorsement by ASME, implied, deliberate or otherwise, of the software (SmartCrack-Lite) 
or of Engineering Mechanics Technology, Inc. and should not be construed as such.) 
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SOFTWARE FOR EVALUATION OF STRESS INTENSITY FACTORS BY USE 
OF FORMULAS IN THE STRESS ANALYSIS OF CRACKS HANDBOOK 

The third edition of The Stress Analysis of Cracks Handbook contains many formulas and plots for 
evaluation of stress intensity factors. The use of such results is made more convenient by the software that is 
included in the accompanying computer diskette. The software is called SmartCrack-Lite, is in Windows, and 
contains the following 21 K-solutions included in the Handbook. 

Standard Specimens Infinite & Semi-Infinite Round Bars 

center cracked strip crack from V-notch exterior circum. crack 
double edge crack crack near edge interior crack 

single edge crack crack from elliptical notch Hollow Round Bars 

3-point bend crack from elliptical hole interior crack 
compact tension 2 cracks from ell. hole exterior crack 

arc shaped Disks Shells 

round compact edge loaded center crack axial crack cylinder 
edge crack circum. crack cylinder 

sphere 

Many of the K -solutions include the influence function, which normally requires numerical integration for 
their use. The numerical integration procedure is included in the software and is transparent to the user. This 
makes application of the influence functions much easier. Further description of the software is included on 
the accompanying diskette, which also describes the installation procedure for SmartCrack-Lite. The 
following are the minimum system requirements to run SmartCrack-Lite: any IBM-compatible running 
Windows 3.1, 95, 98 or NT 4.0, a hard disk, and a 3 112" floppy disk. 

The dialog box for the selection of cracks in the "infinite and semi-infinite planes" category is shown 
below as an example. 

The K -solutions available in the software are a subset of the solutions included in a more comprehensive 
software package called SmartCrack, hence the name SmartCrack-Lite. The full SmartCrack software 
package, which is available from Engineering Mechanics Technology, Inc., in San Jose, California, contains 
many additional K solutions, and is able to perform fatigue and stress corrosion crack growth calculations, 
evaluate critical crack lengths, and evaluate crack opening areas. An extensive compilation of material fatigue 
crack growth characteristics is included. 
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