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L1ST OF PRINCIPAL SYMBOLS

Only the principal symbols are listed here. So many symbols are needed that the notation is not necessarily
consistent throughout the book. However, most symbols are clearly defined within each solution page and
those not included in this list will be readily identified.

In many two-dimensional configurations, forces and moment (P, Q, etc., and M) implicitly designate forces
and moment unit thickness. The definition will most often be obvious from the context; otherwise, confirm the

definition so that the stress intensity factor, K, yielded has the dimension: force/(length

stress - (length) 1z,

1, I1, Il (subscripts)

A

B(B:, By, Bur)

)3/2 or

Designations for Mode I, Mode II, and Mode III, respectively
Area of crack surface

Area of crack opening

A crack tip (2-D) or a point on crack front (3-D)
Coefficients for series expansion of Z(z)

Elastic constants for anisotropic solid

Half length of crack in plate or shell

Depth of edge crack

Length or half length of net ligament (2-D)

Radius of circular crack or circular net liggment
Semi-major axis of elliptical crack or elliptical net ligament

Elastic constants for anisotropic solid

A crack tip (2-D) or a point on crack front (3-D)
Width of crack surface for rod or beam

Strength of Bueckner-type crack-tip singularity

viii




List of Principal Symbols ix

D(x/a), D(7), etc.

Width or half width of strip

Depth of bend specimen

Radius of cracked disc or circular hole

Radius of round bar with circular crack

Semi-minor axis of elliptical crack or elliptical net ligament
Semi-major axis of elliptical hole or depth of semi-elliptical
notch

Half width of rectangular hole

Coordinate or length-defining position of concentrated or
distributed load

Half length of second crack (collinear cracks) or of vertical
crack (cruciform crack)

Elastic compliance
Elastic constant: 1 for plane stress, 1 / V1 — 12 for plane strain

Elastic compliance of cracked body at ith load point by jth load

Coordinate or length defining position of concentrated or
distributed load

Semi-major or minor axis of elliptical hole or depth of semi-
elliptical notch

Radial width of annular crack

Model crack size for strip yield analysis (actual crack size +
plastic zone size) .

Model net ligament size for strip yield analysis (actual ligament
size - plastic zone size)

Coordinate of zero crossing of residual stress distribution

Diameter of (cracked) disc

Configuration functions for crack opening displacement
Semi-minor axis of elliptical hole or half width of semi-
elliptical notch

Distance between center of crack and center of circular hole

Young’s modulus

Elastic constant = 4 a G : E for plane stress, £/(1 — 1?) for
plane strain

Complete elliptic integral of the second kind
Elliptic integral of the second kind

Eccentricity of crack in strip
Base of natural logarithm

Concentrated force



X List of Principal Symbols

F(a/b), F(0), F(X\) Configuration correction factors for stress intensity factor
Fi(a/b), F5(a/b)
F](a/b), F]](a/b)

Fui(a/b), ete.
F(p, k)

(s, @)

G

G(a/b), ete.
G(6), GO, etc.
G(Gr, G, Gmr)
H

H(a/b), etc.

h

I, Ih 12, etc.

1)

Im()

J

K(K;, Kir, Kmr)
K+, K, etc.
K,

K(k)

k

kl

Elliptic integral of the first kind

Weight function determined from mth loading system

Shear modulus

Alternate forms of configuration correction factors for stress-
intensity factor

Configuration functions for crack opening area for shells
Crack extension force

Distance between parallel cracks

Configuration functions for crack opening displacement

Half depth of beam

Height or half height of strip with crack vertical to side edges
Half width of strip with crack parallel to side edges

Half distance between parallel cracks

Half width of rectangular hole

Half thickness of uniform wedge

Distance from free surface to crack parallel to it in semi-infinite
plate

Moments of inertia of cross section of rods or beams

Configuration function for crack opening area for cylindrical
shell

Imaginary part of ()

J-Integral

Stress intensity factor

Kratx =" a, K; at 4, etc.

Stress concentration factor

Complete elliptic integral of the first kind
Modulus of elliptic integral

Complementary modulus of elliptic integral



List of Principal Symbols

xi

L, L Ly, L, etc.

4

1)
Zm gb
4y, U3, etc.

M

3l

Dimensions defined in solution pages
Length of normal for ellipse

Total length of crack and hole (or notch)
Length of plastic zone for strip yield model
Length of crack surface contact

Dimensions defined in solution pages

Bending moment
In-plane moment per unit thickness

Slope of tapered double cantilever specimen
Maximum value of ()

Minimum value of ()

Number of radial cracks for star-shaped crack
Origin of coordinat¢ system

Concentrated load
Concentrated load per unit thickness (2-D)

ith applied load

Distributed load (stress)
Internal pressure in shell

Line force (force/length)

Concentrated load
Concentrated load per unit thickness (2-D)

Distributed load (stress)
Concentrated load
Radius of circular arc crack

Radius of circular hole
Radius of cylindrical or spherical shell

Real part of ()

First (radial) coordinate of polar [r, 8, (z)] coordinate system

Inner and outer radius, respectively, of thick-walled cylinder



xii List of Principal Symbols

rpv ry
S(a/b), etc.

N

Ur

U(a/b), Ui(a/b)
Us(a/b), etc.

u
U;
Uy, Ug
V

V(a/b), Vi(a/b)
V2(a/b), etc.

Vi(a), Vi(ao)
Vz(a), Vz(ao)

v(x7 0)? v(r? 0)

vs, v, v(0, y)

v(0, ), v(0, 0, s), etc.

w

W(a/b), Wi(a/b)
W, (a/b), etc.

Plastic zone size and size index, respectively (rp = 2ry)
Configuration functions for crack opening area or rotation
Span between supports of bend specimen

Distance from crack plane to point of concentrated load
application

Normalized half vertex angle of cracked wedge
Dimensionless parameter characterizing geometry of cracked
body, e.g., s = a/(a + b)

Concentrated load per unit thickness (Mode III)

Twisting moment

Distributed traction over surface s

Distributed load (stress)
Thickness of shell

Elastic energy density
Total strain energy in cracked body

Configuration functions for displacement

x-direction displacement in (x, y, z) system
Load point displacement of ith load P;
Displacement components in (r, ) system
Volume of crack (3-D)

Configuration functions for displacement
Electric potentials

y-direction displacement in (x, y, z) system
Half crack opening displacements
Displacements perpendicular to crack plane
Width of plate (strip)

Interval of periodically repeated collinear cracks

Configuration functions for displacement (Mode III)
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X0

Yo
Z(2) (Z1(2), Zn(2),Zm(2))

Z'(2), Z(z), Z(2)

Z'(2)

')

Vxyy Vyzo Vex

Y6y Ybzy Yeor

A

z-direction displacement in (x, y, z) system
x-coordinate of point A(X, Y) on circular crack front

First coordinate of (x, y, z) Cartesian coordinate system
Real part of complex variable z = x + iy

x-coordinate of point of concentrated load application
y-coordinate of point A(X, Y) on circular crack front

Second coordinate of (x, y, z) Cartesian coordinate system
Imaginary part of complex variable z = x + iy

y-coordinate of point of concentrated load application
Westergaard stress function

Z'(2) = dZ(2) / dz, Z(z) = dZ(2) / dz, Z(z) = dZ(2) / &
Complex conjugate of Z(z) (used in Part I)

Third coordinate of (x, y, z) or (r, 0, z) coordinate system
Complex variable z = x + iy

Complex conjugate of z: Z = x — iy (z* is used in Part I)

Complex coordinate of point of concentrated load application
(Z() =X + iyo)

Elastic constant: (1+v)/2 for plane stress, 1/[2(1-v)] for plane
strain (= 1/)

Direction of applied stress

Direction of concentrated load (for cracked wedge)

Elastic constant (= 1/c)

Parameter characterizing relative rigidity of second plate (or
material) (= E1h; /Eh)

Gamma function

Direction of applied stress
Exponent specifying distributed load

Shear strain components in (x, y, z) coordinate system
Shear strain components in (7, 8, z) coordinate system

Thickness of uniform wedge



xiv List of Principal Symbols

A(Ar, A, D)
A;
Acrack

Ano crack

Atotal
6 (61, 611, o)

o, O, 6(x), etc.

Exs Ey; &z
Ery €0y &z

¢
0

0 crack
0 no crack

0 total

(g, n, k)

Load point displacement

Load point displacement at ith load (P;)

Additional displacement due to the presence of crack
Displacement in the absence of crack

Total displacement (= Ayocrack + Acrack)

Crack surface relative displacement

Crack opening displacements at specific point on crack (Mode

D

Shell parameter: €2 = (t/R)/12(1 — v2)

Normal strain components in (x, y, z) coordinate system
Normal strain components in (7, 6, z) coordinate system
Complex coordinate taken at crack tip

Second coordinate (polar angle) in [, 8, (z)] coordinate system
Parametric angle defining point 4 on crack front of circular,
elliptical, semi-circular (surface), or quarter-circular (corner)
crack

Half central angle contained by circular arc crack(s) (2-D) or
circumferential crack in cylindrical shell

Half vertex angle of infinite wedge with symmetrical edge
crack

Relative rotation at infinity

Additional rotation due to the presence of crack

Rotation in the absence of crack

Total rotation (= Ono crack + Berack)

Elastic constant: (3 —v)/(1 4 v) for plane stress, 3 -4v for
plane strain (=28 —1)

Ratio of two systems of applied load

Shell parameter (= 8/+/t/R = a\/Rt)
Poisson’s ratio

Elliptic integral of the third kind
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Og

Oy, Oy, O
Oy, 09, Oz
Oy, Oyp

T, T¢

Ty

Txyy Tyzy Tox
Trs Tz, Tar

@

®(a/b), (9),
@1(9), @2(9), etc.

¢, $(2)
¢

¢crack
¢n0 crack
¢t0ta1

X> X(2)

w

9 9 0 d
Ox’ 8y’ dyy’ Os
P F P
2 9y ? Oxdy’

vz

etc.

Notch tip root radius
Mass density

Applied stress

Maximum tensile stress in residual stress field

Normal stress components in (x, y, z) coordinate system
Normal stress components in (7, 6, z) coordinate system
Yield strength in tension

Applied shear stress in Mode II and Mode III, respectively
Yield strength in shear

Shear stress components in (x, y, z) coordinate system
Shear stress components in (7, 6, z) coordinate system
Airy’s stress function

Configuration functions for rotation

Function of complex variable z = x + iy

Relative rotation at infinity or kink angle (= ¢ crack) at cracked
section

Additional rotation (or kink) due to the presence of crack
Rotation in the absence of crack

Total relative rotation (= @ nocrack + @ crack)

Function of complex variable z = x + iy

Angular velocity of rotating disc
Angle defining direction of applied load

Partial differential operators

. 2 2 .
Harmonic operator (= 367 + 58),_2 in (x, y) system)



FOREWORD

Fracture mechanics was introduced in the 1947-1952 period using the idea that onset of rapid crack
extension occurred when the crack extension force became large enough to cause rapid joining of small
openings near the leading edge of a crack. The “force” concept used was the rate of loss of stress field energy,
G, per unit of new separation area. Unfortunately the usual training in stress analysis of engineers did not
provide methods of estimating values of G. However, in the mid-1950s, use of a relatively simple method of
crack-stress field analysis, introduced by Westergaard, permitted demonstration that the severity of the
enclosing stress field, tending to cause crack extension, could be represented by a stress intensity factor, K.

In addition, values of the force, G, were related to K by the use of equation G = K* / E; where E is Young’s
modulus. This led to use of toughness measurements in terms of critical values of K necessary for rapid crack
extension. This change of concept and nomenclature was of special importance to the understanding and
practical use of fracture mechanics by engineers, and led immediately to general acceptance of fracture
mechanics. Despite the sound theoretical basis for the force, G, engineers preferred a representation of critical
conditions for crack extension in terms of principles of stress analysis with which they were familiar.

The introduction of the K concept was shown to be of special value for studies of fatigue cracking. It was
shown that from calibration tests, it was possible to make estimates of the danger of crack growth by small
initial cracks due to load fluxuations during periods of use in service. The use of K values for studies of fatigue
cracking was followed by the use of K values for studies of corrosion cracking and corrosion fatigue.

In the use of fracture mechanics, estimates of K for potential or real cracks are commonly needed. For this
purpose, Tada’s Handbook of K Values (renamed The Stress Analysis of Cracks Handbook) for cracks in
various structural locations has been widely used. Previously available only in notebook form, this collection
of K values has been reviewed and checked carefully.

G. R. Irwin, 1997
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PREFACE — THIRD EDITION

The work on this handbook virtually began during the doctoral dissertation of Dr. Hiroshi Tada under the
direction of Dr. George R. Irwin during the late 1960s at Lehigh University. In that dissertation, a modest
number of new crack-tip stress intensity factor solutions were developed. Upon completion of his degree, Dr.
Tada was employed by Del Research Corporation with the primary task of developing material for the Stress
Analysis of Cracks Handbook. That led directly to the two earlier editions, with Fracture Proof Design
Corporation providing the venue for much of the work on the latter of the two. This third edition has been
produced with Dr. Paul C. Paris and Dr. Tada at Washington University, St. Louis, with modest cooperative
effort from Dr. Irwin. It seems fitting that this long-term effort to develop such a handbook should finally be
published hardbound by a leading engineering society, The American Society of Mechanical Engineers
(ASME).

During the 30 years of development of this work, Dr. Tada has continuously devised new solutions,
collected others and improved them, and developed fitting formulas and curves to present them in a
convenient form for use by practitioners and researchers alike in the field of fracture mechanics. His coauthors
herewith recognize his monumental effort in accomplishing that task. The text accompanying the solutions
presented in this handbook was the joint task of the three individuals involved, each contributing several
sections and editing others. In addition, we acknowledge that the original work related to three of the
appendices included contributions from other coauthors: H. Ernst, R. McMeeking, and L. L. Loushin. The
involvement of many other individuals through direct assistance, suggestions, corrections, and encourage-
ment throughout the 30 years are also noted and appreciatively acknowledged.

There is a software disk (see pages 676—677) available to purchasers of the third edition which allows rapid
numerical computation of some much-used stress intensity factor K formulas for commonly adopted test and
crack configurations found in practice. We especially thank Drs. Dilip Dedhia and David Harris for their
interest in this book. Incidentally, the new appendix on K values for plates subjected to pinching loads was in
fact originally a topic raised by the dissertation of Dr. Harris.

This third edition also adds new appendix sections on the J-Integral, on displacements prescribed on crack
surfaces, on plastic zone instability (explaining a potentially interceding “elastic” failure mechanism), on
engineering estimates of stress intensity factors, and Mode III plasticity solutions, as well as about 30 new
solution pages and modifications of many older solutions.

The objective of this and each edition has been to document all of the important methods and results of
elastic stress analysis as may be applied to small-scale yielding fracture mechanics and beyond. The principles
and methods are found in the initial text sections and in the many appendices provided. Numerical approaches
such as finite element methods, boundary collocation methods, and so on, remain in such a high state of
development that discussion of them has been deliberately omitted. However, we have attempted to include all
of the relevant and lasting material on elastic analysis as it applies to fracture mechanics and related
disciplines.

Hiroshi Tada, Paul C. Paris, George R. Irwin, September 1997
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PREFACE — SECOND EDITION

Since the last modification of this handbook in 1975, many new results have been forthcoming that are
appropriate to include herein. Over 100 new solutions and other material have been added. Some corrections
and modifications for completeness of existing crack stress analysis solutions have also been included in the
new edition.

The project of further developing this handbook is ongoing and we hope to offer additional results some
time in the future.

We thank the many readers who have offered comments and corrections over the past 10+ years. Further
suggestions are welcome.

Hiroshi Tada, Paul C. Paris, October 1985
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PREFACE — FIRST EDITION

This text is intended to provide the user with a comprehensive source of formulas and stress analysis
information on crack problems. The emphasis is on useful information for treatment of actual problems on
crack propagation through fracture mechanics correlation parameters and current fracture criteria, such as K;
approaching K. as a plane strain fracture criterion.

The information provided, however, is not limited to that used in current practice, but also embodies other
fundamental stress analysis results. For example, where stress functions are known for the complete solution
to a crack problem they are either listed or referenced; again, where they are known, functions are listed that
may be readily converted to displacements, such as integrals of stress functions.

Each numerical solution and approximation method is accompanied by the author’s estimate of the
accuracy of the results or the method; moreover, source references are listed in all cases for those users who
wish to explore further details.

The information presented is useful only to the degree that it can be understood and properly used. For this
reason, descriptive sections of text material are included (a) to define the meaning of the information
presented, (b) to indicate and illustrate its conversion to other forms, and (c) to develop methods of applying it
to actual cases or problems.

In addition, there are sections of text devoted to (a) the theory and useful methods of compliance calibration
analysis; (b) weight function analysis for handling certain cases of arbitrary loading; (c) orthotropic,
anisotrpoic, and dynamic effects; and (d) plasticity analysis of crack problems, especially a discussion of the
J-Integral methods. Other implications of crack stress analysis (e.g., stress concentrations and notch field
equations) and related results (e.g., electric fields in plates with cracks for electrical potential calibration) are
given where available.

Obviously, we intended not to limit the material presented to idealized stress analysis results alone, but
rather to expand those results where usefulness will be enhanced. For that reason any suggestions by the
reader for future additions are welcome.

Xix
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2 Partl 1.1

INTRODUCTION

Fracture studies of structural elements have been revolutionized in the last 50 years by the analysis of their
sensitivity to flaws or cracklike defects. Within these studies an essential ingredient is reasonable and proper
stress analysis especially with regard to flaws with high local elevations of stresses from which fractures
progress through various crack propagation mechanisms, including corrosion and fatigue cracking.

Full studies of fracture behavior cover both the stress analysis aspects and the material behavior in terms of
resistance to the stresses imposed. However, the purpose here is limited to the development of significant
stress analysis details and relevant parameters, and to the compilation of available stress analysis results with
cracks present insofar as they may be foreseeably related to actual fracture studies.

The redistribution of stress in a body caused by introducing a crack or notch may be solved by methods of
linear-elastic stress analysis. Of course the greatest attention should be paid to the high elevation of stresses at
or surrounding the crack-tip, which will usually be accompanied by at least some plasticity and other
nonlinear effects. Nevertheless linear-elastic stress analysis properly forms the basis of most current fracture
analysis, at least for "small scale yielding" where all substantial nonlinearity is confined within a linear-elastic
field surrounding the crack-tip. Consequently, the character and significant parameters of linear-elastic crack-
tip fields are examined first.

CRACK-TIP STRESS FIELDS FOR LINEAR-ELASTIC BODIES

The surfaces of a crack are the dominating influence on the distribution of stresses near and around the
crack-tip, as they are the nearby and stress-free boundaries of the body. Other remote boundaries and loading
forces affect only the intensity of the local stress field at the tip.

The stress fields near crack-tips can be divided into three basic types, each associated with a local mode of
deformation as illustrated in Fig. 1. The opening mode, Mode I, is associated with local displacement in which
the crack surfaces move directly apart (symmetric with respect to the x - y and x - z planes). The edge-sliding
mode, Mode 1I, is characterized by displacements in which the crack surfaces slide over one another
perpendicular to the leading edge of the crack (symmetric with respect to the x - y plane and skew-symmetric
with respect to the x - z plane). Mode III, the tearing mode, finds the crack surfaces sliding with respect to one
another parallel to the leading edge (skew-symmetric with respect to the x - y and x - z planes). The
superposition of these three modes is sufficient to describe the most general three-dimensional case of local
crack-tip deformation and stress fields.

Y Y
Mode I " Mode IL ModeIl

Fig. 1. Basic modes of crack surface displacements.
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The most direct approach to determine the stress and displacement fields associated with each mode follows
the manner of Irwin (1957), which is based on the method of Westergaard (1939). Modes I and II can be
analyzed as two-dimensional plane-extensional problems of the theory of elasticity, which are subdivided as
symmetric and skew-symmetric, respectively, with respect to the crack plane. Mode III can be regarded as the
two-dimensional pure shear (or torsion) problem. Referring to Fig. 2 for notation, the resulting stress and
displacement fields are given below.

\eading edge
of the crack

\.

Fig. 2. Coordinates measured from leading edge of a crack and stress components in the
crack-tip stress field.

Mode I
ox = LY : cosé [1 — sianinﬁ] + ovo + O(rl/z)
(27r) & 2 2 2 ’
__K 0 030 A
oy = (27”)1/2 cosy [1 —l—smzsm > } + O(r )
K, 0030 '

Tey = sinZcosZcos=2+ O(r

! @m)? 2 272 ( )

(1)

and for plane strain (with higher-order terms omitted)
0: =v(0x +0y), iz =Ty =0

_& e 00 _ .20
u= G[r/(27r)] cos 3 [1 2v 4+ sin }

2
_K inl o —2p — cos?l
V= G[r/(Zﬂ')] sin 7 [2 2v — cos 2}
=0
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Mode 1II:
Ki nt 0 030 h
Oy = — /sm [2+coszcos ]—i—axo—i-O r
(2mr) ”
oy = K, sm9005 cos32 + ( )
o2 2 "
(2mr) *
K s
Tay = z 0 cosg [1 — 51n'981 79] ( )
(27r)
and for plane strain (with higher-order terms omitted) (2)
o: =v(ox +0y), ez =Tp- =0
u="Ru [r/(27m)] /zsinQ [2 — 2+ cos Q]
G 2 2
. 2
v= ?”[r/(Zﬂ')] 2cosg [ 14 2v+sin g]
w=0
Mode III:
P n smg+mo +0< /)
(2mr) ©
Tyz = Koy /cos'9+0(/) 3
(27r) A3)
Ox =0y =0; =Txy =0
w= KG’” [(2r) /7] smg
u=v=20

Equations (1) and (2) have been written for the case of plane strain (i.e., w = 0) but can be changed to
plane stress easily by taking o> = 0 and replacing Poisson’s ratio, v, in the displacements with v/(1 + v).

In Eqgs. (1) — (3), higher-order terms such as uniform stresses parallel to cracks, o, and 7, , and terms of
the order of square root of r, O(r /2 ?), are as indicated. However, normally these terms are omitted since as »
becomes small compared with planar dimensions (in the x - y plane) of significance to the stress analysis,
these higher-order terms become negligible compared with the leading 1/+/r term. Therefore these leading
terms are the linear-elastic crack-tip stress (and displacement) fields.

The parameters K, K;;, and K,;; in these equations are called crack-tip stress (field) intensity factors for the
corresponding three modes (Fig. 1). Since K, K;;, and K;;; are not functions of the coordinates, » and 6, they
represent the strength of the stress fields surrounding the crack-tip, as in Eqs. (1)—(3). Alternately, they may
be mathematically viewed as the strengths of the 1/+/r stress singularities at the crack-tip. Their values are
determined by the other boundaries of the body and the loads imposed, consequently formulas for their
evaluation come from a complete stress analysis of a given configuration and loading.

Physically, K;, K,;, and K;;; may be regarded as the intensity of load transmittal through the crack-tip region
caused by the introduction of a crack into the body of interest. Correspondingly, formulas for K may be
regarded as formulas reflecting the redistribution of load paths for transmitting force past a crack. Thus it is
plausible to observe that small amounts of plasticity or other nonlinearity at the crack-tip do not seriously
further disturb the load redistribution, hence the relevance of K, K;;, and K,;; remain.

Similarly, from a physical standpoint, K;, K;;, and K;;; may be regarded as representing the intensity of the
linear-elastic stress distribution surrounding a crack-tip, where small ammounts of nonlinearity at the crack-tip
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are embedded well within the field and do not significantly disturb it. Thus, a given combination of values of
K;, K;;, and K,;; represents a unique crack-tip stress field environment for small-scale yielding. Because
fracture processes of a material may be regarded as "caused" by this surrounding crack-tip stress field
environment, the intensity factors K, K;;, and K;; play a large role as fracture correlation parameters in
current practice. For this reason, much of the tabulated material to follow includes formulas for X, K;;, and
K,;; for various configurations and loadings.

Finally, from Egs. (1) — (3) it is significant to note that stress intensity factors have units of

(force) x (le:ngth)_3/2

Moreover, since they are linear factors in linear-elastic stress equations, they must be proportional to the
applied loads. Thus it can be observed on a dimensional basis that in addition to the load they must contain
other characteristic lengths, such as crack size. This result is a main feature of implying flaw-size effects in
fracture, which indeed are observed, and further implies that these size effects can be fully analyzed only if
stress analysis effects are included.

NOTE: It is interesting to note that the expressions in the brackets of the displacements « and v in Egs. (1) are identical, that is,

0
1—21/+sin2552—21/—00525

0
=p0- cos2 3 (see P.1.3b and P. 1.3c)

However, since these distinct expressions have been almost invariably used up to present, they are retained in Eqgs. (1). It
immediately follows from this identity that the magnitude and direction of the Mode I crack-tip displacement vector u = (u, v)

are given by
~ K 0
- (5o

Yt
u 2

The proportion and direction of the displacement vector in Mode I crack-tip field are schematically presented in Fig. 3.

Sl raot
N lul-.aC(p-l)
dl=cp r=f
= ‘ S _ L __
= Kz [T
¢ G yamw

Fig. 3. Mode | displacement field.
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ALTERNATE EXPRESSIONS FOR CRACK-TIP ELASTIC FIELD

In Modes I and II, stress and displacement \V)
components given by Eqs. (1) and (2) are t
sometimes expressed in alternate forms. These Y c.
expressions and the corresponding expressions for f {l'
r - 6 components are given below. ="
- — e |
= O
r”
6
o} X
Fig. 4A
(1) x - y Components (Fig. 4A)
Mode I:
—sin&sin 39 (4 50
o . , 1 sinZsin< o 30052+0052
1 0030 1 9 50
oy = cos—¢ 1 +sinzsin<z 5 = —{ 5cosZ — cos=*
! V2nr 2 22 27r4 2 2
Ty sin g cos 370 —sin g + sin 570
0 0 30
{u} KI\/T cos 5 (ﬁ 20) KI\/TI (4[3—3)6085—(:057
==/ —Ccos = | =—4/—=
v G V2| gipnl 2 G V2r4 (48 — 1)sinQ—sin3—0
2 2 2
Mode II:
—sinQ(2+COSQcosﬁ) —5sin? — sin3l
Ox X 2 2 2 Ko 2 2
1 0. 0. 30 1 00 50
o = SIn = COS % COS =~ = —{ —sinZ+sin=*
g 2nr 272 2 V2rré g 520
Txy Q o Q . ﬁ 0 30
0052(1 sin Zsin 2) 3cosz+cos >

in? 20 930
{u}:& I smz(ﬂ—i-cos i) i Ll{ (4ﬁ+l)sm§+sm7 }
V2r

GVor) _ . . 0(p_ 2\ [ G 4) _ (48— 5) cosf — cog3l
cosz(ﬁ 2 4+ cos 2) 4p 5)(;052 cos =

2(1 —v) plane strain

where ﬂ(: l/a) = { 2(1—1k_u) plain stress
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/Ur
Tre

Uy
G,
| A
(2) r - & Components (Fig. 4B) 7
Vi \
]
Fig. 4B
Mode I
o 1—|—sin2g SCOSg—cos%e
' K 20 K 1 0 30
= cos— cos” = = -—{ 3cosZ + cos=2
ZZ V2mr ) ) 2 ) 2rr 4 02 302
smzcosz smz + sm7
0 9 30
{ ” } K [ | cosy (ﬁ 5 0) K, \/71 48 -13) cos 7 — Cos -
=—/— —cos — | =—/—~
ug G V2r —sing 2 G V24| _(4p— 1)sin§—|—sin32—0
Mode II:
o sing (1 ~ 3sin’ g) —55in§—|—3sin32—l9
' . K]] .0 20 . K]] 1 aw Q _ . 3_0
) = o —51n§(3cos 5) _mz 381112 3sm2
Trt 0 20 9 30
cosz (1 — 3sin 5) cosz—|—3cos )
—ein (8- 3cosl (4B — 3)sinf 1 35in30
{ur}:ﬁ & smz(ﬁ 3 cos 2) :ﬁ\/Zl (48 3)sm2—|—3s1n2
up G Vo —cosg (ﬁ+2—3coszg) G V24| —(4p— 1)005§+3COS370
2(1 —v) plane strain
_1 _
where g (_ /s a) )2 <L> plain stress
14+v
NOTE:  For Mode I, u, = u, u; = —v (displacement is in 0/2 direction).
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SLENDER NOTCHES AND STRESS CONCENTRATIONS FROM
STRESS INTENSITY FACTORS

It is worthy to note that crack-tip stress intensity factors, as detailed in Eqs. (1) — (3) of the previous section,
are fully applicable to the tips of deep slender notches (Creager 1967). See Fig. 5 for location of coordinates.
For the region of the notch tip where »’ is small compared with other planar (z - y plane) dimensions (except
for notch breadth), the stress field becomes ( L <7’ < p, small ')

Mode I
o —008370, 1 —sin%smi
Ux _ K p cos3 b4 K cosel 1+sin&sind b4 - — — (4)
T;y 2 21 ‘ %9, v 2mr! 2 0,2 39,2
—sin <~ sm—cos—
Mode II:
smﬁ —sin& (2 + cos? cos 3'9/)
” Ki  » 3 K. 20 o
1 1
oy p = S —sin=%- 5+ sin - cos 5 cos =5~ + - (5)
Ty \2mr! 2r B i \2mr! 0 2 - 20_ ﬁ
cos= cos 1 —sin 5 sin
Mode III:

Note that by selecting the center of coordinates at the point £/ from the notch tip the expansion in Egs.
(4)—(6) simply adds an additional term for Modes I and II when directly compared to Egs. (1)—(3).
Moreover, the intensity of the added terms are also given by K, and K}, and these are exactly the same K’s as
found in Egs. (1) — (3). Therefore, formulas for stress intensity factors for cracks, as is extensively tabluated in
this handbook, are also fully applicable to elastic stress computations for tips of slender notches.

Moreover, the first terms of Eqgs. (4) and (5) are significant compared to the second only in the region near
the end radius of the notch, »’ — P/, whereas at greater radius—but still small compared with other planar
dimensions—the same crack-tip stress field, as in Eqs. (1) and (2), will dominate. Therefore, with the
"disturbance" or "blunting" of a crack, or giving it a finite radius, p, the original crack-tip stress fields still
surround the crack-tip. This is clear in the linear-elastic analysis case here, and it should be equally clear that a
comparably (compared to p) sized zone of plasticity and/or other nonlinearity near a crack-tip is probably even
less of a disturbance.

For a Mode I-type loading and configuration (i.e., K;; and K;; zero), for example, Eq. (4) may be used to
find the stress concentration. In such a case

2K;
Omax =0y|  =—— (7)
r=°~h \Jrp
/=0

This result is good for slender notches, a practical example of which is "stop-drilled" cracks (a common
practice in aircraft maintenance). Applying this result to Fig. 6, an elliptical hole through a wide plate where



14a Introductory Information 9

Y
%
/] all
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Y
]
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s
(b) A x
Kz, Kz, Kn
4’
b7/
1 Px K,
(c) | +cosg’ (?F g .

Fig. 5.
(a) Deep slender notches and coordinate system for
notch-tip stress fields.
(b) Corresponding crack.
(c) Conic section (parabola) used for the analysis.

the semi-major axis, a, is perpendicular to a remotely applied tension stress, o, the comparable crack solution
(see page 5.1) is

K] =o\Ta K]] =K111 = 0 (8)

inserting Eq. (8) into Eq. (7) gives

s = 0{2 %} 9)
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, 20 g

R B ¥- S B

Fig. 6

The result is the well-known stress concentration solution for biaxial tension, o, for which the comparable K,
solution is also as in Eq. (8). For uniaxial stress, o, the stress concentration result is

Omax = U{l + 2\/%} (10)

For slender notches (p < a), Eqgs. (9) and (10) are in fact reasonably in agreement. The added term in Eq.
(10) of one times o is to be added only in cases of remotely applied uniform uniaxial stress [and is simply
comparable to accounting for the additional oy, term in Eqs. (1) and (4)]. Knowing that Eq. (10) then follows
from Eq. (9), the full stress concentration solution followed from Eqs. (7) and (8). Noting now that these
stress concentration solutions, both Eqs. (9) and (10), are, actually not limited to slender ellipses, the power
and accuracy of this method is demonstrated.

For further demonstration, for the same elliptical hole in a large plate but loaded by equal and opposite
forces (per unit plate thickness), P, on the surface of the hole at the ends of the semi-minor axis, b (see Fig. 7),
the comparable crack solution (see page 5.9) is

P

K = WA Ky =Ky =0 (11)
Combining Eqs. (7) and (11) and noting that pa = b* for any ellipse gives
2P
Omax — % (12)

which again is the complete stress concentration solution, not limited to slender notches (Savin 1961).

It is not the intended purpose to present extensive information on stress concentrations here, but simply to
illustrate the power of crack stress analysis. Nevertheless, it is evident that close relationships exist between
stress concentration analysis and crack analysis. Later, converse to the preceding discussion, it will be pointed
out that K formulas can also be derived from stress concentration formulas. For further study in stress
concentration theory, Savin (1961), Neuber (1937) and Peterson (1953) are recommended as starting points.

In other instances, the role and formulas for crack-tip stress intensity factors K, K,;, and K;, are also
preserved; for example, see Appendix D for effects of elastic anisotropy. Hence, the most important point of
this discussion of notches is to emphasize the generality and scope of crack-tip stress field analysis.
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Fig. 7

ENERGY RATE ANALYSIS OF CRACK EXTENSION

Energy rate analysis of the effects of flaws historically preceded crack-tip stress field analysis. The Griffith
Theory (Griffith 1920) and later modifications (Irwin 1948, 1952; Orowan 1949), termed the Griffith—Irwin
Theory, made use of this approach. Basically, these methods use an energy balance analysis of crack
extension.

The total elastic energy made available per unit increase in crack surface area (one side of the crack surface)
is denoted by G for the linear-clastic case (Irwin 1957) (the non-linear counterpart, J, is discussed later; see
Appendices A and J). Physically, G, may be viewed as the energy made available for the crack extension
processes at the crack-tip as a result of the work from displacements of loading forces and/or reductions in
strain energy in a body accompanying a unit increase in crack area. Alternatively, G can be regarded as a
"generalized force" based on the potential energy change per unit forward displacement of a unit length of
crack front, which results in G being defined as "the crack extension force."

Following this line of argument, it is not difficult to show that for linear-elastic conditions (Irwin 1948,
1952; Paris 1957)

_Ur(AL,4)
e T (13)
U (P, A)
and Q—+—0A (14)
. g_P2 acC 15
amd - 9=5% 13

where Uy is the total strain energy in a cracked body with a crack area 4. Uy is alternately expressed in terms
of A and load point displacements, A, or in terms of 4 and loads, P;. In Eq. (15), C is the elastic compliance
and the equation is written for a single loading force, but may be generalized for several forces (Paris 1957).
Derivations of results such as Eqs. (13), (14), and (15) are also available for distributed boundary tractions,
and so on (Bueckner 1958). Equation (15) and its consequences are also discussed in Appendix A.

The G implied by Eqs. (13)—(15) is the average value along a crack front weighted for the extent of crack
extension involved for each increment of crack front in the three-dimensional sense. In two-dimensional
situations, such as uniform extension of a straight-through crack in a thin plate subject to extension, G may be
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viewed as the value of a point quantity along the crack front. Moreover, for certain purposes, the three-
dimensional situation may be viewed as being made up of two-dimensional slices to view G as a point
quantity.

The expressions for G, Eqs. (13)—(15), are often useful as tools to compute G, itself, and other quantities.
For an example, sec Appendix B, where a method of computing displacements is developed using Eq. (14).
Equation (13) will be used as an example as follows.

RELATIONSHIPS BETWEEN G AND K

If a cracked body is put into a "system-isolated condition," that is, with load point displacements fixed so
that no work is done by loading forces, then Eq. (13) becomes self-evident. The energy made available for
crack extension is the strain energy released by the extension.

Consider that a body with a crack is put into a system-isolated condition for conceptual clarity.
Subsequently, presume the crack-tip is elastically
pulled closed over a distance «, as illustrated in
Fig. 8, from (a) to (b). The work done in elastic

y closure will all go into increasing the total strain
energy Uy. Therefore (Irwin 1957; Paris 1965)

AU;
G=——"
(a) X system isolated
L.. 2 OyV  TyxlU | Tz W
X dx =g (F+5+5 ) a9

\ _ 0
Where oy, Tyx, 7yz, and u, v, w are stresses and
displacements of the crack surface, respectively,
occurring on the portion of the crack surface pulled
closed. With the limit o — 0, the stress and
displacements may be obtained from the crack-tip
Fig. 8 fields, Eqs. (1)—(3). The stresses are appropriately
obtained with » = x, # = 0, and the displacements

with » = o — x, § = 7. Making these substitutions and integrating Eq. (16) leads to (for plane strain)

(b)

t

l-v_ 2 1-v 2 1 2
9= % T taghn )

It is noted that each term in the integrand of Eq. (16) leads to a corresponding term in Eq. (17) with no
interaction between Modes I, 11, and III. Noting £ = 2(1 4+ v)G and that

E'=E (plane stress)
or (18)
E' :E/(l — 1/2) (plane strain)

The total energy rate, G, may be in general subdivided for each mode

g = g] + g][ + g]]] (19)
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where

g] —K, Z/E/

G = Ku ’ / E' (20)
1

G = K 2/2G = %KIII :

It should be noted that these relationships are for straight-ahead crack extension, as developed from Eq. (16)
and Fig. 8. Therefore, although they may not suit all physical applications, they form a useful conceptual basis
and are suitable for many computations.

Corresponding relationships for anisotropic elastic bodies are noted in Appendix D.

SUPERPOSITION OF G AND K RESULTS

Often in applications, a single cracked body or member is subject to several loading force systems (each
system in equilibrium) which can be denoted as systems (1), (2), (3), (4), ..., etc. Because K values are factors
containing the load linearly in linear-elastic stresses, superposition applies. That is to say, the total K for all
loading systems applied simultaneously is the algebraic sum of K values for each system applied separately.
However, because different fields of stress occur for each mode, as noted from Egs. (1) —(3), the sums must be
separated for each mode or

Kr =Ky +Kio) +Kjgy +— — ——
K =Ky +Kpp) +Kygy +—— —— (21)
Kt = Ky + Koy + Kgzy + — — ——
Using Eq. (20) to restate Eq. (21) in terms of energy rates
1 1 1 2
_ o Iy Iy
g = { (1) + gI(Z) + 91(3) -
Y, Y, Y, ’ 22
9y = {911(1) + g11(2) + g11(3) == __] (22)
B l/2 1/2 1/2 2
G = g111(1) + g111(2) + g111(3) -

Equations (21) and (22) along with Eq. (19) become the rules for superposition of crack-tip stress intensity
factors and energy rates.

It is of interest to note that Eqs. (21) imply that Green’s function methods may be used for distributed force
systems, again separating modes; although here Eqs. (21) are stated for discrete systems. The Green’s
function methods are discussed later (see pages 1.17 and 1.18).
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MEANING OF PLANE STRESS AND PLANE STRAIN FOR
FRACTURE MECHANICS PURPOSES

The mathematical definition of plane strain is that throughout a deformed body

u=ux,y)
v=v(xy) (23)

w = O(or constant)

An alternate definition of plane strain is

e =W_9
. 0
e =G+ 5E=0 (24)
_O0w_ Ov_
Yz = y+ Z_O

It can be noted that Eqs. (24) follow directly from Eqs. (23) or vice-versa. Noting Hooke’s laws, yet another
definition of plane strain is

0z = V(Jx + (Ty)

Tz =0 (25)

Tz =0

Again Egs. (25) follow from Egs. (24).
On the other hand, plane stress is mathematically defined as

o:=0
Tez =0 (26)
Tz =0

where, as before, an alternative definition in terms of strains or displacement derivatives is possible but is not
of useful clarity.

The term "generalized plane stress" is applied to cases of deformation where Eqs. (26) apply on the average
through the thickness of a thin plate subject to extensional forces. Often, when the term "plane stress" is used,
"generalized plane stress" is actually implied.

The above definitions of plane stress and plane strain are those used in books and reports on the theory of
elasticity, the theory of plasticity, and other such works on solid mechanics in general. However, in fracture
mechanics terminology, these terms take on special, more restricted meanings. In fracture mechanics, instead
of characterizing stress and strain states throughout a body, special attention is given to the crack-tip and
surrounding region. "Plane stress fracture" or "plane strain fracture" have come to mean that the stress and
strain conditions within the plastic zone at the crack-tip are plane stress or plane strain, respectively.

Due to the high stress—strain gradients near a crack-tip, the zone of plasticity at the tip is constrained against
contraction along the crack front by the elastic material surrounding it, if the plastic zone size is small
compared with the length of the crack front. This creates plane strain fracture in the "linear-elastic fracture
mechanics" sense, that is, where so-called "small-scale yielding" (compared with x - y planar dimensions)
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conditions apply. In applications of current linear-elastic fracture mechanics analysis to flat plate test
specimens (or structural members) with through-the-thickness cracks, the ratio of the crack-tip plastic zone
size to sheet thickness becomes the criterion of plane stress vs. plane strain conditions. Ironically then, the
most common applications of fracture mechanics stress analysis to plates with through cracks are situations
where stress analysis of elastic portions of the body is properly done using plane stress to characterize
conditions, but where frequently the conditions within the crack-tip plastic zone are indeed plane strain. This
is called a "plane strain fracture" situation.

In applying Eqs. (20) to convert stress intensity factors to energy rates, or vice-versa, along with Eq. (18), a
confusion (if not a paradox) arises. If elastic portions of the body are plane stress and the crack-tip region is
plane strain, which conditions should be used in the conversion?

For example consider a long, slender double
cantilever beam configuration of constant thick-
ness, as illustrated in Fig. 9. Considering the case of

M C 1 pure moments, M, is instructive (Rice, 1964), since,

2h clegrly, adding crack length is directly eguivalent to

MC a _! I adding material at the center of the cantilever arms.

Plane stress conditions are thus present where all of

. the strain energy is added at the center of the arms.

Fig. 9 Nevertheless, conditions near the crack-tip can be

plane strain, and considering the crack closure

derivation of Egs. (20) from Eq. (16), it is also clear

that crack-tip stress field conditions apply to Eqgs. (20) and the conversion should be made using E’ for plane

strain, Eq. (18). Plasticity at the crack-tip tends to confound this discussion, but not if the surrounding elastic

field is plane strain as well as the plastic zone. The complexity of these concepts is due to the attempt to

resolve a 3-dimensional situation with 2-dimensional viewpoints, which apparently is unavoidable. Although

this example illustrates that £’ should be adjusted for crack-tip conditions, for simplicity, it is common

practice to use the plane stress value, £, in Eqgs. (20). Since v is normally about 0.3, the resulting error, if any,

is less than 5% in computing K formulas. This practice is again mentioned in Appendix A, as compliance
calibrations require conversions from G to K.

Finally, for elastic—plastic fracture mechanics, where small-scale yielding at a crack-tip does not apply,
plane strain fracture events or tests require only that plane strain conditions exist in the "fracture process zone"
at the crack-tip. This fracture process zone is the region in which the immediate crack extension processes
such as advanced separations, void growth, and coalescence are taking place. This process zone may be
embedded well within the crack-tip plastic zone, near the tip of the crack. Therefore it is evident that for plane
strain in the process zone, it is not necessary for the whole plastic zone to be in a state of plane strain.
Nevertheless, it is also evident that the immediate region of the crack-tip, that is, the process zone, must be
subjected to plane strain. Therefore, blunting of a crack upon loading to a radius (or "crack opening stretch")
characterized by J /o, would at least require J /o to be small compared with specimen thickness, especially
for through-the-thickness cracks. (Further discussions of J appear in Appendix J.) For this context, J may be
viewed as the elastic—plastic analog to G.

In summary, the reader is cautioned that for fracture mechanics purposes, the terms plane stress and plane
strain are often used as local definitions of conditions in the crack-tip region. Moreover, the local size of the
region involved will depend on the analysis approach used, linear-clastic vs. elastic-plastic, and is
consequently subject to future developments in fracture analysis. Nevertheless, even within the most
developed context of linear-elastic fracture mechanics confusion still remains, for the example cited of
converting G to K, and other circumstances.
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EFFECTS OF SMALL-SCALE YIELDING ON LINEAR-ELASTIC
FRACTURE MECHANICS

"Small-scale yielding" means that the nonlinear zone at a crack-tip is small compared with the region in
which the elastic crack-tip stress fields, Eqs. (1)—(3), apply. Indeed, the circumstances are that the nonlinear
or plastic zone may be regarded as embedded well within a surrounding elastic region. How small the plastic
zone must be, compared to other (planar) dimensions, depends on the accuracy desired.

The size of the crack-tip plastic zone may be estimated from Eq. (1), for Mode I, if small-scale yielding is in
fact present. In any event, from dimensional considerations of Eq. (1), it is evident that the form for an index
of the size, ry, of the plastic zone is

ryza(fi) (27)

where oy, is a yield strength for the material. The values of « may also be estimated from Eq. (1) by taking
the stresses ahead of the crack, that is, § = 0, and computing the point at which yield criterion is first satisfied
approaching the crack-tip (Paris 1957) and also adjusting for shape of the yield zone, and so on, the most
commonly assumed values are (Irwin 1960b)

(plane stress)

a:{ - (28)
or (plane strain)

-5

The plasticity at a crack-tip causes some redistribution of stresses to maintain equilibrium and therefore the
full width of the plastic zone, r,, is estimated at just twice the above results, that is

rp = 2}"y (29)

and it is emphasized that these results, although dimensionally correct, are merely estimates, since work-
hardening, large strains, and other obvious influences are ignored.

The redistribution of stress to satisfy equilibrium implies that the center of coordinates (r, 6) for the elastic
field, Eqgs. (1), is advanced ahead of the real crack-tip into the zone of plasticity (Paris 1957; Irwin 1960b).
This correction for the "effective crack size" is often taken as approximately equal to », added to the actual
crack size. Using an "effective crack size" in linear-elastic fracture mechanics stress analysis calculation is
regarded as sometimes appropriate. However, if very high accuracy is desired, it is appropriate to have r,
small enough compared to planar dimensions, including crack size, that it may be entirely neglected. On the
other hand, for the purpose of examining trends, and for low-accuracy calculations, the "effective crack size"
correction has been proposed at times for application to large-scale yield situations. In any event, judgment is
required for particular applications.

Nevertheless, provided the scale of yielding is small enough, all of the preceding results and derivations
based on linear-elastic theory are, indeed, correct and appropriate to apply to real physical situations.
Therefore, this discussion now proceeds based mainly on linear-elastic analysis and methods, but it will also
provide other nonlinear analyses and mathematical models as seems appropriate for possible future use (e.g.,
seec Appendix J).
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INTRODUCTION TO STRESS FUNCTION METHODS

As shown by the preceding discussion, the primary objective of crack stress field analysis is to obtain a
characterization of the stress—strain region enclosing the crack-tip, the region within which the progressive
separational process occurs. Characterization in terms of K values, assuming linear-elastic behavior, only
requires knowledge of stresses and strains close to the crack-tip. However, studies of crack extension often
involve displacement measurements at some distance from the crack-tip. Thus solutions of crack problems
that permit stress and displacement calculations in the entire stress field are of interest. Solutions of Mode 1
and Mode II crack problems in closed form are known for a large number of 2-dimensional, linear-elastic
problems. The solution procedure uses the stress function approach and, therefore, the stress function method
is discussed first. Except for special problems, mainly those of Mode III type, closed-form solutions are
strictly applicable only to infinite plate crack problems. Computations of K values and displacements for strip
and finite-plate crack problems usually require a numerical approach. In such problems, however, the stress
function viewpoint can often enhance the efficiency of numerical methods.

Choosing x,y Cartesian coordinates, the stress equilibrium equations are

0oy OTxy Oty Ooy
=0 =0 30
ox = Oy T Ox + Oy (30)
These equations are satisfied if we assume
9’ 9’ 9’
= Oy =—, Ty = ——— 31
7 6y2 » o’ o Oxdy (1)
The Hooke’s Law equations are
Eex =0 — V((Ty + 0';)
Eey = 0y —v(ox + 02) (32)
By = 2(1 + 17y

where 0. = 0 for plane stress and 0. = v(ox + 0,) for plane strain and the identity £ = 2G(1 4 v) can be
noted.

A convenient equation representing the fact that three strains are defined in terms of derivatives of only two
displacements (strain compatibility) is given by

e 825}7 B 82%@,

oy’ ot Oxdy (33)
Substituting Eq. (31) into Eq. (32), followed by use of Eq. (33), provides
v (v'e) =0
2 2 (34)
where V2 = 8—2 + 6—2
ox” Oy

Equation (34) is obtained independently of whether plane-stress or plane-strain is assumed in Eq. (32); ® is
termed the Airy stress function.
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As a starting point for solving specific problems, Muskhelishvili (1933) noted certain analysis advantages
were possible if one assumed the solution of Eq. (34) was either the real or the imaginary part of

F=z"¢(z) +x(2) (35)

where z = x + iy and z* = x — iy. If the problem can be arranged so that the crack of interest occupies a
straight segment of the x-axis (y = 0), a simpler, one-function approach suggested by Westergaard (1939) is
often useful. Westergaard discussed several Mode I crack problems that could be solved using

o= Re{?(z)} +y Im{Z(z)} (36)

where

7=47
and, for subsequent use, dz (37)

_d7 7 _4d

Z= dz %72 = dzZ
From Egs. (36) and (31)

or = ReZ—yImZ'

oy = ReZ 4y Imz’ (38)

Txy = —y ReZ !

For a straight crack on y = 0, a loading symmetry such that 7, = 0 ony = 0,, corresponding to Mode I, is
automatically furnished by Eq. (36). The displacements, assuming plane-strain, are given by

2Gu = (1—2v) ReZ —y ImZ } (39)

2Gv =2(1 —v) ImZ —y ReZ

For plane-stress, v in Eq. (39) can be replaced by v/(1 + v).
In checking the derivation of Eq. (38) from Eq. (36) and of Eq. (39) from integration of Eq. (32), it is
helpful to use the Cauchy-Riemann equations. These are

Re{/'(2)} =& (Ref) = a%(lmf)

0.
, (40)
m{f'(@)} = & (mf) = ~ £ (Ref)

In terms of Eq. (35), Eq. (36) corresponds to assuming

= ReF, x=2—z0, ¢:%7 (41)
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The solution of one of the crack problems briefly discussed in Westergaard (1939) is given by
2(2) = ——— (42)
1 (af2)

The problem solved with this stress function is the crack problem studied by Griffith (1920) with the aid of
previous work by Inglis (1913); a central crack of length 2a, with 0, = 0, = ¢ at distances remote from the
crack.

In terms of the vectors

i 0 0,

z=re |, z—azrleil, Z+a=i”2€i (43)
Equation (42) can be expressed as
0,40
or i{e——‘ 2}
= 2
Z \/me (44)
From differentiation of Eq. (42)
—0'(12
Z'(z) = o (45)
[7-4}
and can be expresses as
3
Z/ _ —oa 6715(91+92) (46)
(rir2)

From integration of Eq. (42),

and can be expressed as

6, +«92)

Z=0 rlrzei( 2 (48)

The angles in the preceding equations are restricted to the range -7 to 7 (radians). Equations (44), (46), and
(48) are helpfuul in forming the real and imaginary parts of functions as indicated in the equations for stresses
and displacements using the identity ¢ = cos ¢ + isin ¢. From these equations it is clear that ReZ,y ReZ’,
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and y ImZ’ are all zero along the line segment occupied by the crack |x| < a and y = 0. Thus free boundary
conditions along lines of the crack are provided. Remote from the crack, as |z| approaches infinity, y ReZ’ and
y ImZ’ are again zero and ReZ = o. Thus the remote stress field is 0, = 0y = o and 7, = 0.

In the limit of small enough values of r, /a, taking r = a,r, = 2a,6 = 0, and 6, = 0, Eq. (44) becomes

ova _b
7 ==Y _¢ 2 49
\/2}”1 ¢ ( )

This relation can be written as

2(¢) =K [ /2x¢ (50)

i0,
where (=re =z—a (51)

and K =K; =ovna (52)

The Mode I stresses and displacements very close to the crack-tip (as shown in the introductory comments)
can be derived using Eq. (50), the associated values of Z’ and Z, expressing these in vector form as illustrated
above, and substituting real and imaginary parts (as appropriate) into Eqs. (38) and (39).

The single stress function approach of Westergaard is conveniently extended to Mode II crack problems by
assuming (Irwin 1958a)

® = —y ReZ (53)

In terms of Eq. (35), Eq. (53) corresponds to the choices

The stresses are given by

oy =2 1ImZ 4y ReZ'
oy = —y ReZ' (55)
Ty = ReZ —y ImZ'
The displacements (plane strain) are given by
2Gu =2(1 —v) ImZ +y ReZ (56)
2Gv=—(1 —2v) ReZ —y ImZ
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The solution of the Mode II counterpart of the Griffith crack problem is obtained by

T

V1 (a/2)

The remote stresses are o, = 0, = 0, 7, = 7. The crack-tip stresses and displacements are again provided by
Eq. (50) with

Z(z) =

(57)

K =K, = 1/ma (58)

The use of essentially the same stress function, Z, to solve Mode I and Mode II problems is applicable to
many crack stress field problems and can be extended to Mode III by means of the equation

Gw = ImZ (59)
The stresses are given by

7 = ReZ

Txz = ImZ } (60)

Further use of a Z function, which solves a two-dimensional Mode I crack problem in an isotropic material,
in the solution of two-dimensional crack problems (of similar configuration) in orthotropic and anisotropic
elastic materials is discussed in Appendix D. To provide relations that remain generally valid, it is most
convenient to define the three K values as follows [consistent with definitions in Eqgs.(1)—(3)]:

K, I Ty
Ky p = LimitV2mr 7oy (61)
K 0 Tyz

where 7 is the length of a small vector extending directly forward from the crack-tip.
In the case of Mode I, the invariants used in computing principal stresses are

ox + oy

!
~2 = ReZ, Tum = y‘Z ’ (62)

For plane strain, the stress field energy density, U, is given by

_1—21/

2 1 2
U=—c=(ReZ) 4557 (63)
The corresponding relationships for Mode II are
X ) 2 *
‘Tzﬂ: IMZ, Ty = \/|Z|2+y2\z’\ —2yIm(2°Z") (64)
1-2v 2 1 2
U= e (ImZ) +ﬁTlnax (65)
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Williams (1957) called attention to the possibility that studies of U near the leading edge of a crack might
be of interest in predicting crack extension behavior. Irwin (1958a) noted that the largest tensile stresses at a
fixed small distance from a Mode I crack-tip were at 60° to the line of expected crack extension. Either
viewpoint predicts a tendency for the location of advance separation to cause roughening of a flat tensile
fracture surface. Of course, the subject of these comments pertains to the fracture process zone and a treatment
based on stress—strain relations within the crack-tip plastic zone would be more appropriate.

ADDITIVITY OF CRACK STRESS FIELDS AND K VALUES

From the additivity of linear-elastic stress ficlds and the definitions of K, Eq. (61), several conclusions are
evident: (a) the addition of a stress field that does not possess an inverse square root stress singularity at the
crack-tip does not alter the value of K for that crack-tip; (b) when each of several superimposed stress fields
contributes to the K values, the K values are separately additive for each of these modes; and (c) when several
loading configurations are applied to the same crack and the Westergaard Z functions for each are known, the
Z functions can be added together, and the stresses and displacements can then be derived from the total Z
function using methods discussed in the previous section.

For illustration consider the Z function

2 2
2(z) = W(Z’i 5 ¢ b (66)

zZ —a

Using the Mode I value of @, Eq. (36), the problem solved is that of a central crack of length, 2a, opened by
a pair of splitting forces, P, acting against the crack surfaces at the position y = 0, x = b. The value of K at
X=ais

P Ja+b
K=TmVass (67
If we add a second pair of equal size splitting forces at y = 0, x = —b, the total value of Z becomes
2P Va' — b
2() = . (68)
7r(z —b ) 1— (a/z)
From Eq. (68), the K value at each crack-tip is given by
2P a (69)

Simple addition shows that Eq. (69) is the sum of Eq. (67) plus the same expression after substitution of —b
for b inside the radical. Assume next that P = odb. From the additivity rule, the stress field for a uniform
pressure, o, acting against the crack surfaces can be derived from the following Z function:

Z(z) =

20 /”\/az—bzdb
2 2
m1- (@)l b
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Performing the integration,

Z(z) S — (71)

1 (o)’

Eq. (71) could have been derived by the alternative method of adding a uniform biaxial compression,
Z = —o, to the Z value for the Griffith crack (Eq. 42). Because the uniform stress field does not alter K, the
value of K at each crack-tip is o+/7a, as in Eq. (52). If the result needed is the total K rather than the total Z, a
substantial simplification of the computational task can be expected. For example, elementary methods show
that

™

“ db
v

Use of P = odb in Eq. (69) and use of Eq. (72) provides o+/ma. The simplicity of this computation can be
compared to the integration indicated in Eq. (70).

From the additivity principles just illustrated, it can be seen that the solution of a crack stress field problem
can be visualized as a two-step process: (1) solve the stress distribution problem in a manner satisfying the
boundary conditions (including applied loads) but with the crack considered absent; (2) add to this stress field
a stress field that cancels any stresses acting directly across the crack along the line of the crack. In the case of
a crack occupying a segment of the x-axis, the stresses along this segment which must be reduced to zero are
0Oy, Ty, and 7,;. Closed-form solutions of numerous infinite-plate crack problems have been obtained in this
way. Because of the analysis simplifications applicable to Mode III, closed-form solutions can be obtained
using this method for certain finite plate problems. The two-step approach can be termed a Green’s function
method when a suitable stress function for local pressures or shears on the crack surfaces is available. A
suitable stress function of the Green’s function type is one that can be added to the "no crack" stress field
without inconsistency with the boundary conditions assumed in the first step of the above method.

(72)

BOUNDARY COLLOCATION METHOD

The availability of large, high-speed computers permits a variety of numerical methods that can be used
when K cannot be found from a closed-form crack stress field solution. Boundary collocation can be regarded
as a relatively simple extension of methods discussed previously.

Assume that the crack occupies a segment of the x-axis with the crack-tip at z = 0, and that both of the loads
and the shape of the plate containing the crack are symmetrical relative to the x-axis. A simple example would
be a long, single-edge-notched tensile specimen with a crack-simulating notch of length, a, open to the left
free boundary of the plate, and with uniform tension, o, applied across the upper and lower boundaries of the
plate (parallel to the crack). Let W be the width of the plate and let L be the length. The stress field is of Mode I
type and consideration can be given to the use of the stress function Z, where

N
K n=1
Z(Z) :E-’-ZAnZ (73)

n=1

Using Eq. (38), 0, and 7, are zero on y = 0 when x is negative. Thus free boundary conditions are exactly
satisfied along the line of the crack. In addition, it can be observed that Ev =2 Im(Z) =0 on y = 0 for
positive values of x. Since it is desirable to restrict N to a moderate size, free boundary conditions cannot be
exactly satisfied along x = —a and x = W — a. However, if the values of 4;, 4,,..., 4, and K are such
that free boundary conditions are nearly satisfied along these lines, the influence of the remaining errors on the
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stress field close to the crack will be small. A similar consideration applies to the upper and lower boundaries,
where the desired boundary conditions, o, = o and 7, = 0, can be satisfied only on an average basis. Along
the lines x = —a and x = W — a, since stress field errors more remote from the crack-tip are of lesser
importance, it is convenient to choose the boundary collocation points at y values corresponding to equal
spacing of u, in the equation y = a tan u,, where u, is an angle measured from the negative branch of the x-
axis. A similar method for choosing boundary collocation points on x = W —a might be to use
y = (W — a) tan u,, where u, is measured from the positive branch of the x-axis. The preceding methods are
continued as a means of selecting boundary collocation points across the line y = L/2. Only the specimen half
above the x-axis is used because of the symmetry of the problem.

The solution procedure consists of writing the equations for 7, = 0 and o, = 0 at the points selected along
x = —aandx = W — a as well as the equations for 7, = 0 and o, = 1 (since K is proportional to o) at points
selected along y = L/2. If % (N + 1) boundary points are selected, the result is a set of equations, linear in
terms of the parameters K,4,,4,,...,4,, and just sufficient in number to permit determination of each
parameter. However, for a given amount of computing time, it has proved most efficient to limit the value of
N, select the number of boundary collocation points that is three to four times (N + 1), and use a least
squares program to determine the best values for the parameters. Selection of boundary collocation points at
sharp corners should be avoided. The outputs needed from the computer are the value of K and (usually) the
value of the y-direction displacement at the crack mouth position commonly selected for clip gage crack
opening measurements during crack toughness evaluations. A number of calculation refinements can be
added. However, only the basic plan of the method is presented here.

SUCCESSIVE BOUNDARY STRESS CORRECTION METHOD

For illustration, consider a straight, two-dimensional crack occupying the segment of the x-axis, 0<x<a.
Assume that the y-axis is the free boundary of a semi-infinite plate and that the stresses remote from the crack
are oy = 0,0, = 0,7y, = 0. From previous comments, the K is not altered if the remote stresses are all taken
as zero and a uniform pressure, o, is assumed acting inside of the crack. Thus an approximate estimate of K is
given by K ~ o/ma. An appropriate stress field is provided by the Z function of Eq. (71) under the
assumption that o would be added to real calculation of g,,. Along x = 0, the value of 7y, from this Z function
is zero and the average of oy is zero. Successive additions of stress fields which remove the normal stresses,
oy, along x = 0, and the consequent normal stresses o, along the line of the crack, can be visualized as an
infinite repetition of additive stress fields (Irwin 1962a). Each stress removal along the line of the crack
provides a corrective contribution to the value of K. If the o stresses on x = 0 from the Z function of Eq. (71)
are termed oy (o), the calculation can be compactly summarized by a pair of integral equations as follows:

p(0) = ox(0) + / 4(B)f (b.y0)db (74)
0

o0

q(b) = /0 P(¥0)g(b,yo)dyo (75)
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where

Yo (yﬁ + 20’2)

ox(o) =0 —3/2—1
(55 ")
Jlbyyy) =22V ( 2y —2“2”3> (76)
’ - 2 2 2 2
ﬂ(yé—kbz) /az +y3 vy t+b a +y,
4 by
gbyo) =~ ———— 02 > (717)
(b +y0)
The total K is given by
B 2 [ q(b)db
K—\/ﬁ{a—kﬂ i m} (78)

and turns out to be larger than o/7a by about one-eighth. For calculation purposes it is convenient to choose
o =1 (since K is proportional to o), b = asina, y, = atan 3, and to use equal intervals of o and 3 in
conducting the necessary numerical integrations. The calculation is started by using of o (o) for p(y, ) in Eq.
(75). The resulting ¢(b) is used in Eq. (74) to obtain an improved value of p(y,) for use in Eq. (75). A
calculation of K from Eq. (78) is made for each new value of ¢(b) and the computing process is stopped when
the change of K becomes smaller than some selected fraction of oy/7a. Similar calculation plans are
applicable if the initial "no-crack" stress field is due to thermal stress induced by a uniform rapid cooling along
x = 0 (Lachenbruch 1961).

The use of the preceding method for strip problems is more complex. Even for problems having symmetry
relative to the midline of the strip, convenient stress removal functions for the parallel free boundaries of the
strip are not available. Nevertheless, a number of problems of this type have been solved (Tada 1972b) using
a modification of the method. The main advantage of the successive stress removal method is rapid
convergence of the total K estimate. In compensation, the programing tasks may be substantially greater than
would be encountered using the boundary collocation method.

K ESTIMATES FROM FINITE ELEMENT METHODS"

Although finite element methods are commonly used for practical stress analysis problems, special
planning is necessary for efficient use of such methods to determine K for two-dimensional crack problems.
For three-dimensional crack problems—for example, a part-through surface crack—even with expert
planning, an accuracy of 10% is not easily obtained. The comments given here are mainly limited to two-
dimensional problems.

Two kinds of procedures have been used with considerable success. In the first of these, assuming the stress
state is caused by externally applied loads, the method is directed toward the computation of the total stress
field energy, U, =13 P;A,, for each of a series of crack sizes with the loads, P;, held constant. In the
preceding equation, 4, is the displacement parallel to P; of the local region of load application, If 4 is the

* Historically, this was written for the First Edition in 1973. Progress in numerical methods continues at a rapid pace.
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increase of the severed area corresponding to a crack size increment and if U, is the increase of Uy for that
increment, K can be obtained from the equation

2

K 6Ur 1 YAV
T9= 5 T Py

This procedure simply models an experimental compliance calibration in terms of finite element computations
of the load displacements, A; (Watwood 1969). The advantage of the procedure is that refinement of the finite
element mesh toward very small element sizes near the crack-tip has little influence on the displacement
differences, 0A\;, remote from the crack and is therefore not required. In compensation, the computations must
include a range of crack sizes and reliable results require careful study of the accuracy of the load
displacement differences.

Procedures that use very small elements close to the crack-tip have yielded values of K with an accuracy of
better than 2%. Experience is necessary in developing approximate methods of size reduction of the finite
elements close to the crack-tip and in choosing the stiffness matrix for this region. Generally, K values have
been determined by positioning computed values of an extensional stress at the element centroid; plotting
values of stress times the square root of distance from the crack-tip, r, against r; and extrapolating to » = 0. A
discussion of finite element methods for K determination by Kobayashi (1973) suggests that, in terms of
computational efficiency, using crack line displacements at nodal points close to the crack-tip along with the
displacement equations valid for the crack-tip region possesses advantages over procedures based on the
stress equations.

Currently, K estimates from finite element methods are at an intermediate stage of development. Trials of
calculations of G in terms of the J-Integral using finite element methods may provide substantial advantages.
In addition, the fact that the stress and displacement patterns at the crack-tip are known and that approximate
first-order corrections to these patterns can be estimated has not been fully exploited (Wilson 1972). The latter
method may be essential as a means for obtaining accurate K estimates for three-dimensional crack problems
within reasonable limits of computational expense (Swedlow 1972).

ADDITIONAL REMARKS FOR PART 1

A. Unified Formulation for In-Plane Two-Dimensional Problems

It is well known that all formulas for in-plane, two-dimensional problems can be expressed in common
forms for plane-strain and plane-stress conditions by choosing G and one other elastic constant which is
defined in terms of v according to the condition.

The expression: G = E/2(1 4 v) can be used commonly for both plane-strain and plane-stress conditions.
For the second constant, x defined as follows is frequently used.

3—v plane stress

3 —4v  plane strain
k=14 3y (79)
1+v

A choice of a neater combination, however, is (1 — v) for plane strain and 1/(1 + v) for plane stress. Two
constants, « and § (8 = 1/«), are defined in this handbook as follows for convenience:

1 [ 2(1-v) plane strain
B=5= {2/(1 +v) plane stress (80)
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A complete, unified formulation in terms of stresses in the x,y Cartesian coordinate system, for example, is
summarized as follows.

%—F(‘?TW—FX:O

Equilibrium equations: ox Oy
0 Txy % _
oty Y =0

Compatibility equation: 5 B
Vo' =—divF = —<3—X+5—Y)

ox Oy (81)
Stress-Strain relations: 2Ge, = O: _ g,
2G€y =0 — Ox
2GYxy = 2Txy
where .
o =pB(ox+o0y)/2
F(X,Y)= body force
Note that o = v(ox + o)) in plane-strain condition or £; = —v(ox + 0,)/E in plane-stress condition [see

Eqs. (25) and (26)] is determined simply as a by-product of the analysis.

Various distinct expressions are used throughout this handbook for plane strain and plane stress. All of
these pairs of expressions can be unified to single forms with the use of G and « or 5. Some examples of
unified expressions are

a. Eq. (79): k=26-1 (79a)
b. Eq. (39): 2Gu= (ﬁ—l) ReZ —yImZ } (39)
2Gv= fImZ —yReZ
Also refer to Eq. (1) and pages 1.3b and 1.3c.
c. Eq (18): E' =4aG (18a)
d. Page 16.3:
=t 0n (82)

K; =2y/a(l1—a)ovh

Also note that « = 1/2(1 — v) repeatedly appears in solutions for many three-dimensional problems. See,
for example, pages 23.7 and 24.1.

B. On Completeness of Westergaard Single-Function Method for Analysis of Cracks

The single stress function approach of Westergaard has a certain deficiency that only affects the elastic field
in the absence of cracks. For the analysis of the contribution to the elastic field by the presence of cracks, the
single-function method is complete.

The deficiency consists in the possible presence of non-zero Z,; even in the so-called Mode I field, for
example, in the absence of cracks (Okamura 1976), as illustrated here in the analysis of a simple example.
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The subscripts I and /I are used here, as in the solution pages, to represent Mode I and Mode II fields,
respectively.

A general Airy stress function ® in terms of Westergaard stress functions is given, combining Eqs. (36) and
(53), by

D=0, + P, = RC?I +y ImZ -y ReZ] (83)

The corresponding stresses and displacements, combining Eqs. (38) and (55) and Egs. (39) and (56),

respectively, are given by
ox ReZ; — y ImZ/ 2 ImZy +y ReZj
oy p =14 ReZ +yImz/ 3 + —y ReZj; (84)

—y ReZ/ ReZ; —y ImZj

u| _ [(B—-1) ReZ; —y ImZ; B8 ImZy +y ReZy
2G{ } - { ﬁ ImZ -y RCZ] } - { —(ﬁ— 1) RGZH -y ImZH (85)

where Z,(z), Z,(z), etc., are abbreviated to Z;, Z,, etc.

Consider, for example, an infinite plate subjected to (a) uniform (biaxial) tension o, = 0, = o at infinity,
Fig. 10(a), and (b) uniaxial tension ¢ = ¢ at infinity, Fig. 10(b). Both elastic fields are symmetric with respect
to x-axis and therefore are Mode I fields. Nevertheless, Z;; for (b) is not zero, but Z; = —i(c/2). That is, the
Westergaard stress functions and, for reference, the Airy stress functions corresponding to Fig. 10(a) and (b)
are given by

(a) Z1(z) = 0, Zy(z) =0; @ = %a(f + y2) (86a)
(b) Zi(z) =0, Zy(z) = —ig ; &= %sz (86b)

These Westergaard functions, Eqs. (86a) and (86b), obviously from Eq. (84), yicld identical stresses on the
x-axis (the presence of nonzero Z;; in (b) has no bearing on them), namely,

oy(x,0) =0, Ty (x,0)=0 (87)

Therefore, to make a segment |x|< a, y = 0 traction-free surfaces, the stress field shown in Fig. 11 must be
superimposed on those of Fig. 10. The Westergaard function corresponding to Fig. 11 has been obtained in the
preceding section, that is, Eq. (71).

Z] (Z) = —2 — 0, Z[] (Z) =0 (71)
1 —(a/z)

As readily observed from the analysis, as long as the crack-absent stress distributions to be removed over
crack segments are identical, the contributions to the elastic field by the presence of cracks are identical
regardless of the difference in the overall elastic fields, and cracks in Mode I fields contribute to Z, only.
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(Fig. 10) + (Fig. 11)
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The resultant Westergaard stress functions after the cracks are introduced, Fig. 12(a) and (b), are
determined simply by superimposing Eq. (71) on Eqs. (86a) and (86b).

) Z1(2) = ———" Zu()=0 (88a)
1~ (a/2)

(b) Zi(2) = ;2 Zn(z) = —i% (88b)
1 - (a/2)

However, adjustment for o, based on Z, alone is often made in the manner described in the paragraph
following Eq. (71) without introducing Z;,.

An additional example of nonzero Z;, in Mode I field and an example of nonzero Z; in Mode II field are
given next.
(c) An infinite plate subjected to in-plane bending o, = cx at infinity (Fig. 13):

1
Zi(z) =cz, Zy(z) = —i% z &= gcx3 (89)

(d) An infinite plate subjected to uniform shear 7., = 7 at infinity (Fig. 14):
Zi(z) =71, Z1(z) =iT; = —7xy (90)

Note that Z;; = 7 alone yields the correct stress field and therefore the correct Airy stress function ®. The
presence of nonzero Z; may seem trivial. However, although Z; does not contributeto ® [®, = ReZ, +y ImZ,
in Eq. (83) cancels out], Z, does contribute to displacements, Eqgs. (85), and Z;, and Z, of Eq. (90) together yield
the correct elastic field (symmetric with respect to y = + x).

Again, Z;; in (c) and Z, in (d) have no significance in the analysis of cracks.

C. Effect of Surface Interference of Partly Closed Cracks

In Mode I displacement field, when there is a crack-tip with a negative K, the crack opening displacement
near that tip is also negative and thus the material would "overlap." Such overlapping is physically
unacceptable and, consequently, solutions involving negative K, are not valid by themselves. However, these
negative K; and negative openings can be directly superimposed on the positive values resulting from other
applied loads, as long as the resultant K, remains positive and the surface overlapping is eliminated. In the
subsequent solution pages, the effect of crack surface interference is ignored for the most part, and negative X
and negative opening displacements are given as solutions. These negative values, therefore, must be treated
accordingly.

When the surfaces of cracks containing the tips with negative K entirely close, the resulting geometric and
loading configuration would be obvious, and the analysis can be made in a usual manner for the final crack
geometry.

Examples of such situations are:

a. A double-edge cracked strip under in-plane bending (page 11.5)
The resulting configuration is effectively a single-edge cracked strip with a crack on the tension side
only, Fig. 15a (page 2.13).
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b. An infinite plate with opposing semi-infinite cracks (leaving a finite net ligament) subjected to a finite
in-plane bending moment (page 4.10)
When the crack on the compression side totally closes, the crack on the tension side also loses its
significance. The resulting configuration is simply an unloaded plate, Fig. 15b.

For these cases, no further discussion is needed here.

When, on the other hand, the crack surfaces only partially close, the interference of closure does affect the
resulting geometric configuration and thus the overall elastic field. The geometry of such a crack is not readily
knowable beforehand. For example, the length of the closed portion of the crack cannot be determined without
analysis.

Examples of such situations are:

c. A strip with a very deep single-edge crack under in-plane bending (page 2.13 with the bending moment
reversed) because the crack-tip is now on the tension side, Fig. 15(c), the crack surfaces on the
compression side close smoothly (K, = 0) only partly, and the edge-cracked strip becomes effectively a
strip with an internal crack, the resulting geometry of which is not immediately known, Fig. 15(c).

d. An infinite plate with a finite crack subjected to in-plane bending about the symmetric axis of the crack
(i.e., linearly varying o, at infinity) (pages 5.18/18a/18b). (i) in Fig. 15(d) is the crack profile of page
5.18a where the effect of the crack surface contact is ignored. That is, K at the left tip is negative and the
left half of the crack surfaces overlap. As discussed earlier, this solution may be directly superimposed
on solutions for other loadings when the resulting configurations are physically acceptable (K, = 0 at
the left tip and no surface overlapping). (ii) is the crack profile when the effect of crack surface contact is
accounted for (page 5.18b, which is to be obtained subsequently). Again, the length of the closed
portion and therefore the final geometry of the crack is not known beforehand. Consequently, before
determining (by superposition in particular) K, at the right tip and the crack opening profile, and so on,
including the effect of surface interference, the final crack geometry must be known.

For some analyses and discussions on the effect of surface interference of partly closed cracks, see Seeger
(1973), Paris (1975b), Bowie (1976a,b), and Gustafson (1976). For additional discussions related to such
surface contact, see Westergaard (1939) and also Appendix G of this handbook.

Next, the effect of crack surface interference is analyzed in detail for example (d). From the analysis of this
simple example, various general characteristics of the effect of surface contact, and some features specific to
the example, are observed, some of which are well known, or physically or intuitively obvious. The approach
is in essence to focus on the portion of the crack that remains open and to remove the stress singularity (K ) at
the point of separation of the closed surfaces by using the usual superposition method.

Let us take, for convenience, the (x,y) coordinate system and z = x + iy with the origin at the midpoint of
the crack which remains open, as shown in Fig. 16. Other quantities specifying the geometric and loading
configurations are also defined in Fig. 16. The coordinate system and dimensions associated with the original
configuration of the crack are indicated with a subscript "0." The right crack-tips in the two systems, x = a and
X, = a,, are common, but the position of the left tip, x = —a, under loading is not known.

The position of the left tip, that is, the point of separation of surfaces in contact, x = —a, is determined from
the condition that the resultant K, vanishes at this point. Refering to Fig. 16, the linearly varying stress
oy = p(xy/a,) in the original system, line (A), is obtained by superposition of a linearly varying stress
oy = p'(x/a), line (B), and a uniform stress o, = p”(p’ + p” = p). Therefore, all that is required for the
analysis are the solutions found on pages 5.1/1a and 5.18/18a applied to the opened portion, —a< x <a.

The resultant K, are, by superposition,

Kpeiy == (p’/2)\/ﬁ+p" Ta 91)
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K _, = 0gives
p"=p'/2 (92a)
and correspondingly
p'=2p/3 (92b)
Kiewra = p'\/7a = (p/3)V7a (92¢)
In addition, the length of closure
{=a=2ay/3 (92d)

is now obvious from the geometry of Fig. 16. That is, the left one-third of the original crack closes or, in other
words, the one-third of the crack on the compression side remains open (a. = a, = a,/3). These relations are

summarized at the bottom of Fig. 16.

The complete set of expressions resulting from superposition of pages 5.1/1a and 5.18/18a after
incorporating the preceding results are now readily obtained. They are summarized in terms of z = x + iy and

a in Fig. 16 as follows:

Zi(2) :%(Z—Fa)s/(z-i—a)(z—a)
2
K1x=7a = 07 K1x=+a :gp\/ﬂ—a

X+ a

p
oy(x,0) = Ta (2x —a)

x<-a, x>a x—a

2v(x,0) = %‘f (1 +§) ()

[x|[<a

(93a)

(93b)

(93c)

(93d)

(93e)
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Fig. 16
Area of Crack: 4 _2_7rp_c12 (93f)
P A=5

These expressions are converted to those in terms of the original system z, = x,, + iy, and g, by replacing
a by 2a,/3, Eq. (92d), and z by z, — a/2 =z, — a,/3, then omitting the subscript "0." The complete
expressions corresponding to Eqgs. (93) and the resulting geometry of the crack are presented on page 5.18b.
Page 5.18b is directly compared with page 5.18a for the effect of surface interference. Discussions of the
comparison will follow.

The following observations are based on the results of the analysis of the present example. Some of them
are general characteristics of surface interference and others are specific features of the present example.

a. The stress variation on the closed portion of the crack near the point of separation of the closed
surfaces is in the form of a parabola (< ), and the separation profile of the surfaces near that point
is in the form of a semicubical parabola (o " ), as is well known (Westergaard 1939).

b. Once crack surfaces close and remain closed, the presence or absence of cracks beyond the point of
separation is immaterial in the subsequent analysis of cracks that remain open.
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c. K; =0 at a tip ensures finite stresses and a smooth separation of the surfaces at that tip. However,
K, = 0 by itself does not necessarily require the stresses to be zero at the tip, as observed from the
preceding analysis (e.g., page 5.18b, "oy (x, 0) - effect of crack” indicated by a dashed line) and the
(Dugdale) yield strip model analysis (pages 30.1 - 32.6). See f. below for further discussion.

d. The crack surface interference naturally increases X at the open end of the crack and the crack opening
area. For the present example, K| is increased to 2(2/ 3)3/2 = 1.089 times the corresponding value with
the surface overlapping permitted, and the crack opening area becomes 47/9 = 1.396 times that of the
opened (right) half. See pages 5.18a and 5.18b.

e. A crack-tip located in a compressive region does not necessarily close; that is, K, remains positive if the
other tip remains open K, > 0. For the present example of linearly varying o, in Fig. 16, when the left
tip is located in x, > —a,/3, obviously K, > 0, and therefore the left tip located in the compression
region —a, /3 < x, < 0 will remain open.

f. As discussed in b., the overall solution in terms of Z(z) after cracks are introduced is given (for Mode )
by

Z1(2) =2(2) no crack 2 @) due to crack } (94)

Zn(2) = Zn(2) no crack

where Z; (2) que to crack 1S determined by the integral of Eq. (70) or the corresponding integral for other
crack configurations. As observed from the example of Eq. (71), the integrals generally result in

Z] (Z)
Zy(2)

Z1(2)

= . -7,
due to crack function of geometry 1(2) no crack} (95)

due to crack

Thus, the resultant field, Eq. (94), is always

%) =24(2) function of crack geometry (96)
Z]] (Z) = Z]] (Z)

no crack

Z,;(z) may be disregarded here because it has nothing to do with the presence of the cracks.
Therefore, it should be noted that the solution given on page 5.18 is strictly for the overall situation of
page 5.18a. That is, for page 5.18, Z;(z),, c;ack (= Pz/a) and Z;; (z) = —ipz/2a) [Eq. (89) with
¢ = p/a] are disregarded.
Similarly, for the present example of page 5.18b, the integral of Eq. (70) results in

Z(2) _p(, 2 \/z+a/3_£Z
due tocrack a 3 z—a a (97)

Z (Z)due to crack 0

no crack (
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and correspondingly

oy(—a/3,0) =p/3 #0 (98)
although K, at the cuspidal tip, x = —a/3, is zero, as discussed in c. above. In addition, it may be
interesting to note that

(x,0) >0
ay(x,0) (99)
x< —a/3

that is, o, (x, 0) on the closed portion of the crack, —a<x<—a/3, and beyond the left tip, x < —a, is in
tension rather than compression until the remote stress is superimposed. Refer to the distribution of
oy(x,0), x<—a/3, found on page 5.18b.

The final result presented on page 5.18b is the superposition of Eq. (97) and Eq. (89) with ¢ = p/a,
that is,

)4 2a\ [z+a/3 Ny
Zl(z)za(z—?> z—c/17 Z”(z):—zgz (100)

Z,(z) is not included on page 5.18b.

. It is obvious that cracks having tips with negative K totally close, partially close with cuspidal ends, or

remain open. It is also obvious, from the analysis of the example, that the final geometry of cracks is
unique; that is the positions of the cuspidal ends are uniquely determined as long as the applied load is
propotional, regardless of the level of the applied load. The "proportional loading" here is in a sense
similar to that used in the theory of plasticity, but less restrictive. It is sufficient if oy, (x, 0) in the absence
of cracks is proportional (actually, if it is proportional only on the segments corresponding to the
portions of cracks that eventually remain open).For the linearly varying o, at infinity (in-plane bending),
the proportional loading is realized when the position of zero crossing of oy, (i.e., the axis of moment) is
fixed. Referring to Fig. 17, let us assume for simplicity that only one right crack-tip is on the tension
side. Fig. 17a is obvious; both tips of the right-most crack are in the tensile region. The presence of
cracks in the compressive region is immaterial. In Fig. 17b, the left tip of the crack is in the compressive
region, but the length on the compression side is less than one-third of that on the tension side
(ac < a,/3), and both tips still remain open, as discussed in e. above. The presence of cracks ahead of
the left tip is immaterial. When a. >q, /3, Fig. 17¢, a cuspidal end is always formed at x = —a, /3. That
is, its position is uniquely determined by the length on the tension side, regardless of the level of the
applied load, or the presence or absence of cracks in x<—a:/3. Only the crack opening profile changes
proportionally to the applied load.

. The analysis of the crack surface interference in three-dimensional configurations will be much more

involved and would require a numerical approach.
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THE CENTER CRACKED TEST SPECIMEN

A. Stress Intensity Factor

Ky = ov/ma F (%)

Numerical Values of F(%/p)

(Isida 1962, 1965a, b, 1973)

Isida’s 36-term power series of (%) (Laurent series
expansion of complex stress potential, 1973) gives
practically exact values of F(%p) up to % =0.9.
Numerical values of F (%)) are shown in the following
graph and table.

10— | e —
§3 g J1-9% ‘F(%b)

e O |Mode T 2
l;é R —<Modex*| _ m#
o — .

! \ MOdem*
T | ! ] 1 =.637
0.6 0.2 0.4 0.6 0.8 1.0
——— b

*See Note 2

p F(@p)
0.0 1.0000
0.1 1.0060
0.2 1.0246
0.3 1.0577
0.4 1.1094
0.5 1.1867
0.6 1.3033
0.7 1.4882
0.8 1.8160
0.9 2.5776

1.0 _ﬂ22_4/\/@ *x

**Exact Limit (Koiter 1965b)
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Stress Analysis Results for Common Test Specimen Configurations

41

Empirical Formulas

a.
b.

Accuracy
Method of derivation, reference

2b, ma
F(%p) = \|—tanz

Better than 5% for 4/, < 0.5
Approximation by periodic crack solution (Irwin 1957)

F(Yp) =1+40.128(%Y) — 0.288(“/b)2+1.525 (vl/b)3

0.5% for 9, < 0.7
Least squares fitting to Isida’s results (Brown 1966)

0.3% for 4/, < 0.7, 1% at %, = 0.8
Guess based on Isida’s results (Feddersen 1966)

1-0.5(%)) +0326(%)"
=%

F () =

1% for any 4/},
Asymptotic approximation (Koiter 1965b)

1—0.5(%) +0370(%))" —0.044(%,)"
1 -4

F(p) =

0.3% for any 4/,
Modification of Koiter’s formula (Tada 1973)

F(@p) = {1-0.025(%)"+0.06(4),) "} Jsec s

0.1% for any 4/,
Modification of Feddersen’s formula (Tada 1973)
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NOTES: 1. Finite height configuration (h/b ﬁnite) is given separately. When h/b > 3, the plate is practically regarded as an infinite
strip as far as the effects of h/b on K are concerned (Isida 1971a).

2. For Mode II configuration (II), the correction factor is identical to F(a/b) in Mode L.

Ky = 7/ma F(Yp)

For Mode III configuration (III), the following formula is exact:

2b
K]]] =TV 7Ta —tanE
ma  2b

Other Methods and References

Compliance Method: Forman 1964

Fourier Transform - Integral Equation: Sneddon 1971b

Finite Element Method: Mendelson 1972, Yamamoto 1972

Boundary Collocation Method: Bowie 1970a

Integral Equations - Successive Stress Relaxation: Tada 1971, 1972a, b

S

(See also pages 2.24, 2.26, 2.35, 2.36, 7.1, 11.1, 11.2, 11.3, 11.4, 18.1, 18.2, 18.3, 19.4, 20.1, 20.2,
20.3,ctc., for related solutions and corrections for various effects.)
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B. Displacements

Crack Opening at Center

__4oa

8 ==V (%)
The following formula has better than 0.6% accuracy for any 4/,.
Vi (@fp) = —0.071 — 0.535(%p) + 0.169(%p) — 0.090(%p)’
+0.020(%)p)" — 1.071%&;(1 —ay)

Additional Displacement at Remote Points (h/b) > 3 Due to
Presence of Crack

g
Acmck = Atotal - ANo crack = Atotal - E - 2h

4
Acraz:k = Ei/a 2 (a/b)

Crack Opening Area

A= Acmck : (Zb)

The following formula has better than 0.6% accuracy for any 4, .

b4 1%t
Y-V

)

A

b—t—b-— p

LYY

TREE

V(@) = —1.071 +0.250(%y) — 0.357(%p)" +0.121(4)y)" — 0.047(¥)" +0.008(%y)" — 1071 —— tn(1 — )

(“Vp)

Method of Derivation: Paris’ equation based on energy principles (Paris 1957) (sce Appendix B)

Reference: Tada 1973
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’

NOTES: 1. E' =E for plane stress and E' = E/(1 — 1/2) for plane strain.
2. Uniform pressure o applied on the crack surfaces results in the same crack opening 6 and remote displacement A ., .-
3. Limiting values of ¥, (%) and V, (%) at % — 1 are exact.

27 1
an 1) = a5 1) = —Ip—-
(@p—1) =1 (Y —1) 71_2_45"1_(1/17
4. For Mode II loading (II), the displacements (II") are
4ta
8 =57V (%)
4ta
A= 7 V, (a/b)

where V| and V, are identical to those in Mode 1. For Mode III loading (III), the displacements (III") are given by

2
-2 4y

21 -1
Vi (%) = - %cosh (sec%)

21a
A= Té V2 (%p)

21
Vz (a/b) = 7_T %Kn (SEC %)

—— ] |- -0 — —

' B b2

— — -ff—— — — [—._.@.——_
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%: 1071
1.0 T T T Mo d'eI T
u ~ [ModeX ,
\ —-—
08 Vi
(2 pterisg) s
o Vol V2 %" 1-% 2 -0.637
1> 0.6 4
'>‘: — MOdQ I\ Vz ]
Modex | > |
T 04 —
B /<~Modemf _
0.2 /
v
! | | | |
0.2 0-4 0.6 0.8 1.0
—_—
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THE DOUBLE EDGE NOTCH TEST SPECIMEN
A. Stress Intensity Factor

M
K, =ovmaF (a/b) _______
Numerical Values of F(%/) , h
Bowie’s results (h/b = 3.0, mapping function method)
have 1% accuracy and Yamamoto’s results (h/b =2.75,
finite element method) have 0.5% accuracy for ‘
0.2 < 9,< 0.9 (Bowie 1964a; Yamamoto 1972). ‘
e (> a-
R —
Vgl i
1.422
-~ |
S \4\ /T=%% F(%b)
K < ' 4 1.0
}? ~] \\é// Mode I*
< \
o8 TN 0-8
T o Bowie Modem*kd\
* Yamamolo 2
06 | | =0.637
0.2 0-4 0.6 0.8 1.0
—_— O/b
*See Note 2

(See also pages 2.32, 2.33, 2.34, 11.5, 15.1 etc., for corrections and various effects.)
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Stress Analysis Results for Common Test Specimen Configurations
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Empirical Formulas

a.
b.

Accuracy
Method of derivation, reference

Better than 5% for 9/, > 0.4
Approximation by periodic crack solution (Irwin 1957)

F(fy) = 1124 0.203 (9fp) — 1.197(9)p) +1.930(%)p)’

Better than 2% for 9/, < 0.7
Least squares fitting to Bowie’s results (Brown 1966)

1,122 — 0.561 (%) — 0.015(‘1/b)2+0.091 ("/b)3
149,

F(%) =

Better than 2% for any %/,
Asymptotic approximation (Benthem 1972)

2b Ta

F(Yp) = (l +0.122cos' ﬂ) gtanﬁ

2b

0.5% for any 4/,
Modification of Irwin’s interpolation formula (Tada 1973)

F(a/b) _ 1.122 — 0.561 (a/b) _ 0'205((1/1))2_‘_0'471 (a/b)3_0'190(a/b)4

=%

0.5% for any 4/,
Modification of Benthem’s formula (Tada 1973)
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NOTE: 1. Both h/b = 3.0 (Bowie) and h/b =2.75 (Yamamoto) are considered effectively infinite.
2. For Mode II configuration (II), the correction factor is identical to /(%)) in Mode 1.

Ky = 1v/ma F(Yp)

For Mode III configuration (III), the exact formula is

2b Ta

Ky = 1pv/may/— tan —
Ta 2b

LIRS ruy o
1%
B. Displacements Aln A/n 8h
Crack Opening at Edges 5 ¥ ) / ) J_
5
’ ke O -> Q-
t—— b-——)'c——b———b h
4
o= % i (a/b) '
— —— —1 &y~

X ER]

The following formula has better than 2% accuracy for any %/

" (a/b) = (72:_2) {0.454 (Sin ;—Z) —0.065 (sin ;T—Z)S —0.007 (sin%)5 + cosh_1 (sec%)}
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Additional Displacement at Remote Points (h/b >3) Due to Presence of Cracks and Crack
Opening Area

g
Acraz:k = Az‘otal - Ano crack = Atotal - E - 2h

4
Acmck = % Vs (a/b)

4= Acmck -2b
The following formula has better than 1% accuracy for any %/,

7ra4

{0.0629 - 0.0610(cos Zb) —0.0019((:08%)8—!—6}1 (sec%) }

V2 () =

=

Reference: Tada 1973
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Method of Derivation: Paris’ equation based on energy principles (Paris 1957) (See Appendix B)

NOTE: 1. E’' = E for plane stress
E' = E/(1 —v*) for plane strain

2. Uniform pressure o applied on the crack surfaces results in the same crack opening 6 and remote displacement A 1, k-
3. Limiting values of ¥, and ¥, at %, — 0 and %}, — 1

Vi (% — 0) =1454, V5 (Y, —0)=0

2 1
Vl ((l/b — 1) = V2 (a/b — 1) = ;an—_a/b (exact)
4. For Mode II loading (II), the displacements (II") are
F— — = = — — L— -0 - —
4ta
8= (W) A/2 ‘ Az

——
S/2 7]

where V', and V, are identical to those in Mode 1.
For Mode III loading (III), the displacements (III") are

21a

8 =22V (Yy) (L") ("

21 ~1 Ta
a == — —_
Vi(Yp) = T cosh (sec 2b)
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I‘I-L\ASLP
l'z_ \\{/- MOdEI _
e (e
o — i
l>‘ 08— \'MKO“IE Vi \
R i
Vol [e)1% 1-% T
f 0.6 Mode I -\72 =0,637
04- [ ModeL | —— ]
B i / L ]
/m
0 y ! l | | |
0 0.2 0.4 0.6 0.3 1.0
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THE SINGLE EDGE NOTCH TEST SPECIMEN
A. Stress Intensity Factor

K; = ov/ma F (%)

Numerical Values of F(%/) R —

The curve in the following figure was drawn based on the
results having better than 0.5% accuracy.

Methods and References
. Boundary Collocation Method (h/b > 0.8): Gross 1964

a
b. Mapping Function Method (h/b = 1.53): Bowie 1965
c. Green’s Function Method (h/b > 1.5): Emery 1969, 1972 1
d. Weight Function Method: Bueckner 1970, 1971 -~ Q>
e. Asymptotic Approximation: Benthem 1972
f. Finite Element Method (h/b =2.75, 1.0): Yamamoto 1972 b .| h
| _L
I
P iy |
422 1.122
o A /2 —
& /
L 10 S
? o9
0.2 0-4 0.6 0.3 1.0

—_— %

NOTE: 1. Load is applied along the centerline of the strip at the crack location (or uniform pressure on crack surfaces).
2. The effect of h/b is practically negligible for h/b > 1.0.

(See also pages 2.13, 2.16, 2.27 to 2.31 etc., for various corrections and effects.)
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Empirical Formulas
a. Accuracy
b. Method, reference

F(Yp) =1.122 — 0.231(%) + 10.550(0/1,)2—21.710(%)3+30.382(a/b)4

a. 0.5% for 4, < 0.6
b. Least squares fitting (Gross 1964; Brown 1966)

4+ 0.857 + 0.265 4/,

F(%p) = 0.265(1 — %) 7
(1 - )

a. Better than 1% for 9/, < 0.2, 0.5% for 4/, > 0.2

b. Tada 1973
. 3
P = /2 ian ™ 0.752 + 2.02(%) + 0.37(1 - sm72r_g)
B a 2 a
ﬂ-a 2 COS%
a. Better than 0.5% for any %, \
b. Tada 1973 1 /2

Crack Opening at Edge

40a

6=V (Yp) 8*

=5

Gross’ results (Gross 1967, Boundary Colloca- |
tion Method) are expected to have 0.5% accuracy h——— b —
for 0.2 < 4/, < 0.7. An empirical formula with 1%
accuracy for any %/, is (Tada 1973)

B. Displacements . ‘l-
|

|

h

|

1.46 +3.42(1 — cos T4
Vi (@) = ( ; )

(COS %%)




54 Partll 2.12

Additional Remote Point (h/b > 1) Displacement due to Crack (Along the Centerline at the
Crack Location)

Acmck = Atotal - Ano crack

40a

Acraz:k = F e (a/b)

The following formula has better than 1% accuracy for any %/

a/b

ahy =
VZ( /b) (1 _ a/b)z

{0.09 (1 - ) (13- 124 + 07 (@) )}

20 /ms
/
> YKze " (/
%? (1-%) ‘_Vl(o{b)/q/ o Gross
L Mr
5: 1.0 044
“gé A
" >
., (1-%5Va(%6) "
T —
/
° 0.2 0.4 0-6 0.8 .0
— 2/p

Method: Paris’ Equation (Paris 1957) (See Appendix B.)
Reference: Tada 1973
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THE PURE BENDING SPECIMEN G-f\r 7 T\M
A. Stress Intensity Factor ' ! -0
oM
o=

K; = av/ma F (%)

fs— QA —
Numerical Values of F(%/p) Ib h
The curve in the following figure was drawn based on the
results having better than 0.5% accuracy. Also used for four-point ’
bending. I S —
"\__‘/—\_J
Aﬂj -0
T AM
1.122
10

03 \\ (1- %) *F (%) 08

AN o6
.

04 0374

0.2 0-4 0.6 0.8 1.0
——

%%

Methods and References

. Singular Integral Equation, Bueckner 1960

. Boundary Collocation Method (%, > 2), Gross 1965a
. Weight Function Method, Bueckner 1970, 1971

. Green’s Function Method (h/b > 1.5), Emery 1969

. Asymptotic Approximation, Benthem 1972

[ S R
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2.14

Empirical Formulas
a. Accuracy
b. Method, reference

F(Yp) = 1.122 — 1.40(%) + 7.33(“/1,)2—13.08(‘1/b)3+14.0(a/b)4

a. 0.2% for 4, < 0.6
b. Least squares fitting (Brown 1966)

4
(@) = \/m 0.923 +0.199(1 —sin%)
b) = Ta 2b cosTd

2b

©

. Better than 0.5% for any %/,
. Tada 1973

o

B. Displacements

Crack Opening at Edge

4oa
6=V (%)

Gross’ results (Gross 1967, Boundary Collocation Meth-
od) are expected to have 0.5% accuracy for 0.2 < 4, < 0.7.
An empirical formula with 1% accuracy for any 4/ is (Tada
1973)

0.66

V(@) = 0.8 1.7(%p) +2.4(Yp) +———
(1 - %)

/M

Additional Remote Point (h/b >2) Displacement (Rotation) Due to Crack

Hcmck = 0t0tal - ono crack

4
acrack = Ef(jS(a/b)
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The following formula has better than 1% accuracy for any 4, .

2
() = (1 i/l;/b> {593 19.69(4fp) +37.14(4) =35.84(4)) +13.12(%p)" }

1.0

o4 —— 04

0.2 0-4 0.6 0.3 1.0

Method: Paris’ Equation (Paris 1957) (See Appendix B.)
Reference: Tada 1973
(See also pages 2.16, 2.27, 9.1 etc., for related solutions.)
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2.16

THE THREE-POINT BEND TEST SPECIMEN
A. Stress Intensity Factor

lP
6M ([ Ps
=5 (%)
K, = o/raF () ”_g b
|
Numerical Values of F(%p)
S

The curves in the following figure have 1% P/
accuracy. 2

1122
0.6
\ Y |_pure
\ § \\/ bending
1.0 ) ™y > <<
\\ (-%) Fc%p) | ? '
~ \ @05 . N=_
T \&\ ® Lsg=s [ 1Y
(‘;L_ 03 ‘\ Cpure Z Z%"—"l'
s \\(/ bending ' b .
ég N 0.4 0.5 0.6
\"; 0.6 N / >
? Z=s R
/s -4 >
04 % B
{0374
0.2 0.4 0.6 0.3 1.0
—— b

Methods and References
1. Boundary Collocation Method (%/, = 4,8) (Gross 1965b)

2. Green’s Function Method (%, = 3,8) (Emery 1969)

Empirical Formulas
a. Accuracy
b. Method, reference

For 8/}, = 4,

1 199 —a/p(1—9/p) (2.15 —3.939/p+2.7 (a/b)z)

F(a/b) = 3
VT (1+24/5)(1 —a/p)"

a. 0.5% for any 4/p
b. Srawley 1976

P
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For $/p, = 8,

F(4fp) = 1.106 — 1.552(4p) +7.71 (%)  ~13.53(4)p)" +14.23(4))"

a. 0.2% for 4, < 0.6
b. Least squares fitting, Brown 1966

B. Displacements

Crack Opening at Edge lp
4oa
6=y, (@) YN
F b
¢ 4
Gross’ results (Gross 1967, Boundary Col- 1

location Method, /5, = 4) are expected to have 1 T P
0.5% accuracy for 0.2 < %, < 0.7. An empiri- P/z _—l L'S /2
b S -

cal formula with 1% accuracy for any %/, for
Slp =4 is (Tada 1973)

0.66

Vi (Yp) = 0.76 — 2.28(%Yp) + 3.87(%)2 —2.04(%)3 +—-
(1—9p)

Additional Load Point Displacement due to Crack

Acmck = Atotal - Ano crack
g
Acmck = FS Vs (a/b)

The following formula has better than 1% accuracy for any %/, ; for 5/, = 4:

a 2
V2 () = (1 _/ b /b> {5.58 —19.57(%Y) + 36.82(%)2—34.94(a/b)3+12.77(“/b)4}
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1.6
~ N
S8 L RS
u; .2 \\\ 2
$ 1 Re]0-%3viceon) O Gross
= 1 /’ S
X 08— Nl S -
o 06 Pu;neding Z%=4 %&Q = 0.66
$ a pure bending ~ =
= L [T s, %)
-{‘%

0.2 0.4 0.6 08 .0

Method: Paris’ Equation (Paris 1957) (see Appendix B)
Reference: Tada 1973
(See also pages 2.13, 2.27, 9.1 etc., for related solutions.)

Note: The curves for S/, = 8 are nearly averages between the curves for pure bending and S/, = 4. For other cases (S/l7 > 4),
displacements can be estimated by interpolation with fair accuracy.
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61

THE COMPACT TENSION TEST SPECIMEN

P
K; = ov/a F1(Yp, My, 4fy) r
] I
where o="P/ b T :
h [T
or K; = oxVb —a F> (Y, . 1) ?
where oy =on + oy ’ O a—.]
Tension Bending d b
p op(a+bse) h —L?
= +
boa (b—ay ,L ‘
_2P(2b+a) l
(b— a)2 P
22+%)
Numerical Values of F, F = — —a/ -
(1= %) b
The curves in the following figure have better than 1% accuracy.
H 3/
o5 s Yo
1.0 0.7
0.3 %, Yo, ¥h)
04 5 N
05 = \
¥ 08 0.7 Ns N
L 0 — o:\ \ X Standard
0.5 . i
07 29 = ~ N\ Specimen
: 0 e ————— o.§ s \
D o 0663
g‘?”/ {.0
06 05
07
0.2 04 0.6 0.8 1.0

_’-b

Method: Boundary Collocation Method
References: Gross 1970; Srawley 1972
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Standard Specimen (ASTM Standard E-399-72)

Standard geometry of compact tension specimen is shown below.

T P
h =0.6b h
h, = 0.275b q‘ +
D = 0.25b ' T
c = 0.25b hy
h 1+
(Thickness = b/2)
p
et a—.—
o C —>tt——— b —_—

A. Stress Intensity Factor 18
The F, values for the standard specimen are plotted /
in the previous graph. For the range 0.4 < 4/, < 0.6, T

the values of F, are plotted.

1 - /
Note:  F, = F, (%, 0.6, 0.7) W 1 /
14

e
Empirical Formula T /
. . 12 <
For the standard specimen, the following formula —
has 0.5% accuracy for /5, > 0.2 (Srawley 1976).
o
Fy (YY) = 0.443 + 2.33(%) 3 ) 0-4 0.5 0.6
— 6.66(Yp) +7.36(%p) —2.8(Yp) — A/

B. Displacements

Opening at Crack Edge
P
1= g1 () Siy A

Opening at Loadline W b —_—

P

02 =bT,V2(/b)
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The following formulas for ¥, and V, for the standard specimen have 0.5% accuracies for 0.2 < 4/, < 0.95
(Saxena 1978).

Vi(%Yp) = (1 +%> (: fZZ)Z [1.6137 + 12.678(9p)

—14.231(9)" — 16.610(%)" +35.050(%))" — 14.494(%)5}

1+,
1—a/b

~0.9925(%)” +20.609(%/;)" — 9.9314(%)5]

2
Va(Yp) = ( ) [2.1630 +12.219(9),) — 20.065(9),)°

Method: Boundary Collocation Method
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THE ROUND (DISK-SHAPED) COMPACT SPECIMEN

;i

i 2 2
n
2 6} 3 \§
D=0.25w / thickness = B
P a
f—— QA —
0.25W P
w > =t
A. Stress Intensity Factor
K; =3VW F(A)

2+4) (0.76 +4.84 11584 +11.434° — 4.08A4)

3/2

F(4) =
(1-4)

B. Displacements
Opening Displacement at Edge

oW

61 :FVI(A)

Vi (4) = exp(l 742 — 04954 + 14.714° — 22.064° + 14.44A4)

Opening Displacement at Load Line

oW

& =2 Va(4)

Vy(A) = exp(0.26 453814 +2.1054° — 8.8534° + 9.122,44)

Method: Boundary Collocation Method
Accuracy: K, 0.3% for 0.2 <4 < 1.0; 6, and 6, 0.5% for 0.2 <4 < 0.8

References: Newman 1979a, 1981b
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THE ARC-SHAPED (C-SHAPED)
SPECIMEN

ASTM E-399 Standard Specimens:

X/ =0 and 0.5

thickness = B
a P
A=— F___
w 7~ wB

K :a\/ﬁf(%,%,A) F(4)
W X X oW
f<—7—7A) - (3W+1.9+1.1A> [1 £025(1 — )%

3746304 +6.324° —2.434°

F(4) 5
VAl —4)

Method: Boundary Collocation Method

Accuracy: X/W =0and 0.5: 1% for 0.45 < 4 < 0.55; 1.5% for 0.2 < 4 < 1.0.
0<X/p<1.0:3%for02<4<1.0

Reference: Kapp 1980
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A. Stress Intensity Factor E/\_/—\/

K; P F(Yp) P
K= 0] P L9 |
K T Fur (Yp) é‘ﬁ
P|
G-« 0>

Numerical Values of F(%/p)

Newman’s results based on a method of boundary collocation are expected to have the accuracy of the order
of 0.1% for 0.1 < 4, < 0.8 (Newman 1971, 7/, = 2).

3

LI_H =1.297
nt2 r 1.2
é‘\ o Newman (g =2) /(/‘
= 1 v
l;é’o 7/ 1-% F(%) Lo

. —!.
} i JI-% F(%%)

0.8 ] ] 0.8

0.2 0.4 0.6 0.8 1.0
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Empirical Formulas
a. Accuracy
b. Method of derivation, reference

F(Y) = (1.297 —0.297 cos;r—Z) \ /%a/sin%a

a. Better than 1% for any %,
b. Asymptotic Interpolation, Tada 1973
an 1=05(9) +0957(%) ~0.16(%)y)’
F(%p) =
1 -4
a. Better than 0.3% for any 4/},
b. Modified asymptotic formula (Tada 1973) AI /2
B. Displacements at Remote Points (h/b > 2) A%l O Y/
‘P
A 2P 1
{AH}_E/{Q}D(/I)) T
!
@TY
P
o
Ay = T2 h' ( ﬂ) 9 - h
i = G 7TCOS SeCzb ba' b ‘
| o= |V
Oy / B
The following formula for D(%}) has better than 0.6% 2 A.‘l:/ 2

accuracy for any 4, .

D(%) = —0.071(%) — 0.535(%,)"+0.169(%)y)” —0.090 (%)) +0.020(%)” =1.071 In (1 — )

where (1.071: 227T >
T —4

Method: Paris’ Equation (Paris 1957) (see Appendix B)
Reference: Tada 1973
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P
T Q
)
S
K; P F (a/b7 S/b)
Ky b= oW F (a/ S/) 4
I 5% AN e Grte O
Kur 7 )| Fur (a/b7 S/b) ' S
1
Q T
P
L

Ta 1
Fur (Y, Slp) = Vtanﬁ- —0
. (COSE )
TS
cosh%

IS tanh IS
l{i-}a 2b 2b

2
cosh 721-—2 Eur (a/b7 S/b)
-1

{ Fi(Yps p)

Fur (Y, ¥p)

} =/ (Y SIp)

Ta
cosh%

f(a/b, S/b) =1+ {0.297 — 0.115(1 — sech;—li) sin%a}(l — cos%)

lzﬂ plane stress
1

m plane strain

Method: Asymptotic Interpolation
Accuracy: F,, exact; F,, F, better than 1% for any %/;, and 5/,

1

Reference: Tada 1973
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¢

a a a a
46 +3.06-+ .84 1 — = 66| = 1-—
T ( b) N (b) ( b)

(o} Kaya- Erdogan —

T T I R

0.2

0.4 0.6 0.8 1.0
a
b
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Crack Opening Area

-
of5) -
2b
Rotation due to Crack
T

5

Methods: K Singular Integral Equation; 4 and ¢ Paris’ Equation (see Appendix B)
Accuracy: K better than 0.5%; Empirical formula 1%; 4 and ¢ 1%
References: Kaya 1980, Tada 1985
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o o(e.a N———~—_/
KIZﬁ' sza b) -

5 2 2 ‘E_’-I
gl(%) = .46 +3.06 %+.84(1 —%) + .66(%) (1 —%) - a —
- b —
o (3)-a(y) —
a a a\? a\? a h a\’ a\? a\?
g3(z) :6.17—28.225+34.54(l—)) —14.39(3) —(1—3) —5.88(1—5) —2.64(3) (1—5)
a a a\? a\’ a 3/2 a\’ a\? a\?
g4(3) — 6.63 +25.163—31.04(5) +14'41(Z) +2(1_Z) +5'04(1_Z) +1.98(5) (1 _Z)
4 T
%!
0.4

N
R \i( >(0.8

N d >/o.'1 J T | T T T
N, 0.6
— Eé\ o5 o Kaya - Erdosan —

~~
G‘:“ 2 \ 0.4
Jls 03
A\ —
o — \
N e ——
% >0 N
__b 0.1 0-2 \\
~ N
0 ] ] | ! \I\
(o} 0.2 0.4 0.6 0.8 1.0
—_— C‘/a

Methods: Singular Integral Equation (Kaya-Erdogan, 9/, = .1, .2, .5, .7). Estimated by Interpolation for
other 4/, .

Accuracy: 1% (Curves are based on the empirical formula above)

References: Kaya 1980, Tada 1985

2

NOTE:  Dashed lines are G(%, — 0) = 1.3 — .3(%,) " and Gy —1)=352(1 = G )\/1— (%)
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2.30

A. Stress Intensity Factor

ted = )

1.30 — 0.65(%) + 0.37(%)2+0.28(a/b)3

F (Yp) =

Method: Asymptotic Interpolation
Accuracy: F,, better than 1% for any %/;
Reference: Tada 1973

F,, exact

B. Displacements
4
Ay = 22U (%)

2T
S =L w ()

QT

U (@) = —0.184(%),) — 0.637(9fp)” —0.129(),) +0.026(%,)* +0.028(4/)+0.008(9)5) " — 1.6446n (1 — )

W(Yp) = % cosh ™! (sec %)

Method: Paris’ Equation (Paris 1957) (see Appendix B)
Accuracy: U better than 2% for any %/p; W exact
Reference: Tada 1973
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A. Stress Intensity Factor e———— |

b U )
K - T i Fur (Yp) 1Y

a 1.122 — 0.561 (/) + 0.085(a/b)2+0.180(a/b)3 ~—a
Fy (Up) = =
1= t—b ——
2b  ma
F]]] (a/b) = Etan%
I— ®->—A —_
Method: Asymptotic Interpolation A’/ %
Accuracy: F, better than 2% for any %,; F,, exact 2
Reference: Tada 1973 h
>2b
B. Displacements S‘% 5%
5, 7
{5,,} 4m{ul <a/b>} )
Ay E Uz (Yp) h 2 Zb
{ O } 27a { Wi (Yp ) } Axp
Apy G W, (a/b ) B A-i/; -

Uy (%) = —0.184 — 0.637 (%) — 0.129(a/b)2+0.026(a/b)3+0.028(a/b)4+0.008 (a/b)5 —1.644 (b/a)en(l — )

Uy (@) = 1.46(%p) — 0.259(%3)” —0.091 (%) +0.052(@)y) ~0.019(9)p)” —0.008 (¢)) " —0.518 £ (1 — 9Jp)

2 1 -1 ma
apy ==___ —
Wi (Yp) = @) cosh (sec 2b)

1 Ta

W, (a/b) = %@En (sec ﬁ)

Method: Paris’ Equation (Paris 1957) (see Appendix B)
Accuracy: U,, U, better than 2% for any %/p; W,, W, exact
Reference: Tada 1973
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2.32

A. Stress Intensity Factor

i PY [ F)
Ki == 0 03 F ()
K T Fur (Yp)

130 — 0.65(9)5) — 0.10(%)” +0.45 (%))’

F(a) =
(“) =,
as) — RCAN Ay
or F(Yp) (1—!—0.30(:05 Zb) 5/ S
PR

Method: Asymptotic Interpolation
Accuracy: F better than 2% for any 4/;; F, exact
Reference: Tada 1973

B. Displacements at Remote Points (h/b >2)

The following formula for (%) has better than 2% for any %, .

3

V(%) = 0292(sinT2) — 0.041 (sinZ2) —0.004(sinT2) +0.637 (%) cosh (sec)

Method: Paris’ Equation (Paris 1957) (see Appendix B)

Reference: Tada 1973

o

2b

— —

AVQ
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~— e — |

P P
(e bal bl

Ky :\/% 0 F(a/bv c/a) Q P ' Q P
Ky T Fu (a/b’ C/a)
¢ o
- O, —> | Q —
’\_/*—\_

Ta 1
%%%%ﬁmg¢ 2

1— (cosg—z COS%)

F( s Ga) = {0 +1 (Ya) - (Yp) o (s Fa)

where

ﬂ%:m%—%ﬂ}

g (Yp) = 0.5(1 - sin%) (2 + sin%)

Method: Asymptotic Interpolation
Accuracy: F, exact; F better than 1% for any %/, and ¢/,
Reference: Tada 1985
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'p
J?.’.T Q
K PY ( Fi (Y ) | ls
Ky Z\/% 0 Fll(a/bv s/b) T
Ky T Fur (Y, 5p) e Q> ' S re- Q-
s L?——»
B
Q T>
=
—\_/——"\—’___‘_
Fiy (a/b, s/b) =
Fr (@, ) RN T ST s
— (140122 cos” 22 sinh I\ | Fu (Y, 3
{Fu(a/b, S/b>} (oot 5) ”( hﬁé’) e
COS%

% plane stress

1
2(1-v)

plane strain

Method: Asymptotic Interpolation
Accuracy: F,, F, better than 2% for any %/, and %/; F,, exact
Reference: Tada 1973
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v\/

K PY( F(Y Ya)
1
Ky ¢ = NGTS 0 F(Yp, Yq)
Ky y T Fry (a/b7 C/a) 4
B B

{FIIIA (Y ©/a) } =, /tan

Fun, (Yps /a)

(P 5} = {1+ 02991 = )" (1= cos2) (i (% 0},

B B

where (0.297: il —1)

Method: Asymptotic Interpolation
Accuracy: F,, exact; F better than 1% for any 4/, and ¢/,

Reference: Tada 1973
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2.36

K PY( F (Y Ya) a Rt

2 a;, c
Ky » = W 0 F( Yy Ya) Lc"‘_c’l
T Frr (a/b, C/a) P, o+

Fur (N a) =

F(%Yy, ) = {1 +0297\/1 - (¢,)° (1 — cos %) }F,,, (Y, )
where <0.297 =—L—— 1>
3

Method: Asymptotic Interpolation
Accuracy: F, exact; F better than 1% for any 9/, and ¢/,

g

Reference: Tada 1973
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K== f(m) - (%+0.7>

3
f(m) =3.46 —2.65m + 1.89m E (m < 0.5)

3.,_\3'%'-'"-‘;'
‘\ f(m)
-~ 32 AN
£ AN
(O - \
“+ 3.0} \\
B N
1 23 . ~
2.6
0 0{ 0.2 03 04 05 06
— m

Method: Empirical formula based on the results by Boundary Collocation Method
Accuracy: Order of 1% for a/h,, > 1
References: Gross 1966; Srawley 1967; Tada 2000



80 Partll 2.38

ELECTRICAL POTENTIAL CALIBRATION

Uniform Electric Field

~— ~—— —
Jo Yo ! Yo
V(@) ‘ Vi(@) . Va(0) vica)
L‘ao Qo .l Qo ‘l Go Qo
Yo-G—=r=-Q =—Q-1 Y, Q- Yo =—Q—
bl P
b b—e] - b b—» B
— —— e NSRS S V
bt RN by

Electric Potentials: V,(a), V,(a)
Potential Ratios:

Method: Conjugate Functions Method
Accuracy: Exact
References: Johnson 1965; Tada 1973
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PART

I11

TwO-DIMENSIONAL
STRESS SOLUTIONS
FOR VARIOUS
CONFIGURATIONS
WITH CRACKS

A. Cracks Along a Single Line

B. Parallel Cracks

C. Cracks and Holes or Notches

D. Curved, Angled, Branched, or Radiating Cracks
E. Cracks in Reinforced Plates

81



82 Part Il

X
0}
zZ=X+1y
Z] (Z) K] 1

Zy(z) p =19 Kn

Z (2) Kpr ) Y 2mz
Z] (Z) | K]

7]1 (Z) = ; K[] 2mz

Zi () Km

Method: Westergaard Stress Function
Accuracy: Exact

References: Irwin 1958a (see also Williams 1957)
NOTE:

These Westergaard stress functions are the solutions for the crack-tip elastic field. That is, Egs. (1), (2), and (3) in the text are
directly derived from these functions by use of Eqs. (38) and (39), Egs. (55) and (56), and Eqgs. (59) and (60), respectively.

3.1
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K=K; —iKy
S (L), (0 —iP)E —z) +ils+ DM
Vo ”+1{(Q+1P)<\/z—0 \/E_o)+ v }

where

14+v

o 3—v plane stress
3 —4v plane strain

Method: Muskhelishvili’s Method (Special Case of page 5.3)
Accuracy: Exact
References: Erdogan 1962; Sih 1962a
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3.3

Method: Muskhelishvili’s Method (Special Case of page 5.4)
Accuracy: Exact
Reference: Erdogan 1962
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85

where

(14v) plane stress

[N) o NS

1 ) ;
(1 — plane strain

Method: Westergaard Stress Function
Accuracy: Exact
References: Tada 1972a, 1973
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86 Part III
z=x+iy
() Lo 52 2
(B -Hol o 22
to) 7o) )l
ROSE
o i) o2
where

{ %(1 +v) plane stress
o=

L(i_1_ i
> ( —1/) plane strain

Method: Westergaard Stress Function (Special Case of page 3.4)

Accuracy: Exact
References: Tada 1972a, 1973
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3.6

Zy (2)
K, P
(2401
K m™ | T
Im 21t =1 In x|+\/5’
20 | ~H 2 R

P

0

T

5}{tanh_l\/|x|/b (=b<x<0)
T coth™' V]x|/b (x < —b)

Methods: Westergaard Stress Function, etc.

Accuracy: Exact
References: Irwin 1957, etc.



88 Part III

3.6a

Y
V(oY)
P ¢
2v(x,0) Y
x -b o]
V2P
K =2
1 \/%
Crack Opening Profile
P tanh_lwm —b<x<0
b
2v (}C, 0) = F
<0 coth™ J%l x<-—b
Vertical Displacement at (0, y)
_ P —-1+/2yb B b\/2yb
v(0,) £ tanh Y+ b y2—|—b2

where

{ %(1 +v) plane stress
o=

1

2

7~
T‘|>—*
X

Methods: v(x,0) Westergaard Function (see page 3.6); v(0,y) Paris’ Equation (see Appendix B) or

Reciprocity (see page 3.5)
Accuracy: Exact

Reference: Tada 1985

) plane strain
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Oy%0)) P
—(xy(X,O) = q
Tyz(x,0) t
- bs X<€0

K; 5 )4

K, yid =—4q V2T b
T

K t

Zi(x) PY (5 g
Im{Zj]();) }=%{q}b{ |T'—l—(l—i—z)lmM
t

Zi (x)
Z;(x)
Im{i,fx) } =3{
7111 (x) T

x<0
x=—b

Methods: Westergaard Stress Function, etc. (Integration of page 3.6)
Accuracy: Exact
Reference: Tada 1973



90 Part III 3.7a

2vixo) 4 4 A
% b - .
T\rv
p
ki =22y

Crack Opening Profile

8p X X
i) = o (15)8
r<0 coth %' x<-—b
Opening at (—b,0):
8p
29(=b,0) = £
v(—b,0) 7rE’b

Method: Westergaard Stress Function (see page 3.7.)
Accuracy: Exact
Reference: Tada 1985
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z=x+iy
{Z((Zzi}:%{2}{1{1}”‘)@1}[{( = - VE) - (R V)
[ ) )

(ZEd -2 o] [{lvmm- ) - - vl e
_{(z )t _722 —(—%)tan | @ —(—z)tan | @—F(z —z)tan |y 2 H

=20 Dot -vm) - v - vy

where

(14+v) plane stress

(ll_zx) plane strain

g

Method: Westergaard Stress Function (Integration of page 3.4)
Accuracy: Exact

References: Tada 1972a, 1973

NO— DO|—
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3.9

Method: Integration of page 3.6
Accuracy: Exact
Reference: Tada 1972a, 1974
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3.10
Y
V(oY)
-—1t(oY)
2V(x,0)
2V (-0,0) *
T ) P
- X 0 e X
I
z=x+1iy

Zi(2) =§r(1 —a)m

- _P -1 [z _P _ -1z -+ X9
Z](Z)—ﬂ_(l «) tanh \/;(_Zw(l «) cosh z—x0>

Ky =—g—(1-a)
L= 27TXO @
Crack Opening Profile:
2v(x,0) =— (1 — a)tauf1 [x]
x<0 X0
Opening at Infinity:
2P
2v(—00,0) = F(l - )

Vertical Displacement at (0, y):

P Ll 20y a2x0y(x0 + )
v(0,y) = — (1 — a){ sin T 25 2 2
mE X+y 2 x4y

%(1 +v) Plane Stress
*=1{7/
2

where
m) Plane Strain
Method: Integration of pages 3.6, 3.6a or Special Case of page 5.19 or 5.20, or 24.19

Accuracy: Exact
Reference: Tada 1985
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Thin Rigid Wedge

_h_Ly// //////777 /
[/ [/

X - E'h
x:10 \V27h
E/
K; =— h
x=— 27h

-1 [—x
2u(x,0) = —h sin —
—b<x<0 T b
where
E E plane stress
~ E/(1 —v”) plane strain

Methods: Singular Integral Equation, Westergaard Stress Function or a Special Case of page 4.15 or
page 5.21

Accuracy: Exact
References: Barenblatt 1962, Tada 1985

The Westergaard Stress Functions are

1
A ==
Z(z) = E—hsmh z
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Thin Rigid Wedge 4 ’ P’ *

X
E'h
K =—+py\/7-D
x:{) \2mh P /2
E'h b
=———+p\/m-
K sy TP ()
4 -1 [—x 4p
20(x,0) = =hsin 4 /—+—/—x(b—x)
Cpea<o T b E'
where
E E plane stress
~ E/(1 —v”) plane strain
Method: Superposition of Solutions of page 3.11 and page 5.1
Accuracy: Exact
References: Tada 1974
NOTE: 1.In (I), when p > p,, separation of contact surfaces occurs near x = —b, and whenp < —p,, crack closure occurs

near x = 0.
2. In (1), when p > 0 (remote tension), separation of contact surfaces occurs for large —x, and when p < — p,, crack closure
occurs near x = 0.

The Westergaard Functions are

=881 {50

p. 3.12 p. 3.11 p- 5.1 (replace o by p)
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z=x+1Iy

{%((Zz)) } :%{g} [1{1}%8%} [% (sm‘j();_—_“;ﬂml j(()zzo——_a:)>
_{é}% (\/Zﬁ —d’ +1/z) -az)]

P o111 zota ZoTa 1 2 2 2 2
Ko, =——|1—ayo—oI| |z +- - 72 _
I*a \/7Ta|: o 3yo:| [2( Zo_T_a+ ZoFa a \/ZO @ TVE

0] 011 zoTa Zo ta
K, ——=_|1 S
ta Vra o Mo |2 20 _T_a+ ZoFa

g

Method: Westergaard Stress Function

Accuracy: Exact
Reference: Tada 2000

where

(14+v) plane stress

= N—

(11_1/) plane strain
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Two-Dimensional Stress Solutions for Various Configurations with Cracks

97

where

%(1 +v) plane stress
a=9371/1
2

1—1/) plane strain

Accuracy: Exact

Method: Westergaard Stress Function (Superposition of page 4.1)
References: Tada 1972a, 1973
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4.3

where

Method: Westergaard Stress Function (Special Case of page 4.1)
Accuracy: Exact
References: Tada 1972a, 1973
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99

Crack Opening Profile:

4p -
2v(x,0) = — tanh

x| >a

Relative Vertical Displacement at Infinity:

“1Yo )0

! O
Tk a /a2 + yé

4P
2Voo = — | sinh

Voo = 2v(x,0)

[x|—00

Methods: v(x,0) Westergaard Stress Function (see page 4.3); v Paris’ Equation (see Appendix B) or

Reciprocity (see page 4.9)
Accuracy: Exact
Reference: Tada 1985



100 Part II1 4.4

P bta M a

K,

ta T =T F
-4 2y/ma\ bTa" 2\/ma 2 2
+ (bxa)\b —a

Koo 0 b*ta
1t =3 Jra\lbra

Method: Muskhelishvili’s Method (Special Case of page 6.2)
Accuracy: Exact
Reference: Erdogan 1962
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101

-Q. (o) a

z=x+1y
Z](Z) P /12 2 1
{ZH(Z)}Zl{Q} b2 az <b1_2+222{0}>
Z]]](Z) T a —z a 1

) -Hell b
Im¢ Zy(x) p ==<¢ Q p|cosh  |———
71]1()6) & T a

[x]>a

Method: Westergaard Stress Function

Accuracy: Exact
Reference: Tada 1985
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4.5a

6/2

Crack Opening Profile:

4P -
2v(x,0) = — |:cosh :

|x|>a

=R NORNEEY

a(b—x)

Vertical Displacement at (0, y):

2 2 P
v(0,y) =% fanh |12 (a/b)2 —a 2b . 1- (a/b)2
i Lt (a0 N1 (@)

Relative Vertical Displacement along y-Axis at Infinity:

4p -1b
Ve = ——cosh  —
Voo = —ycosh  —
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103

Relative Rotation at Infinity:

!
TE a X

0:8_P\/13227<: {2\/(}@0)} )

where

(I14+v) plane stress

D= DN—

g

(1171/) plane strain

Methods: v Reciprocity (see page 4.3a); 6 From page 4.10a with M = P\/b’ — a’ (or Paris’ Equation —

see Appendix B)
Accuracy: Exact
Reference: Tada 1985

NOTE: 1. Always K, , <O0.
2. No surface interference (x < —a ) was considered.



104 Part III

4.6

Z1(z) P _ 2
ij o V=20 o L™ 1(#
Z]]](Z) T T (a/Z) -1

Methods: Superposition of page 4.5 (or Special Case of Periodic Cracks, page 7.7)
Accuracy: Exact
References: Erdogan 1962; Tada 1973
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] >2V,
N P, N l N

—p —a 0 o —B2— TX ";'r
| Ip

Crack Opening Profile:

-1 _(a 2 <
2v(x70)=8p{tanh } 1=y a<lx<b

7E" | coth™ 1— (a/b)2 x| > b

> a

Vertical Displacement at (0, y):

L R R A et (/1
v(0,3) = = l‘“a h m s m}

Relative Vertical Displacement at Infinity:

8P -1b
Ve = ——cosh  —
Voo = —cosh  —

2vee =2v(0,y) = 2v(x,0)

y—00 X—00
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g

Method: v Paris’ Equation (see Appendix B) (or Reciprocity — seec page 4.3a)
Accuracy: Exact
Reference: Tada 1985

where
1+4+v) plane stress

L) plane strain

1—v

D= D—
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P

FAdrsed

z=x+1iy
Z(2) 1P Vo' —d —|—f(g)z i br—a
) e et
Zi(2) p b
ZJII(Z) . q {—f<é>\/az—zz—|—(b—z)sin 1h — }
Zum(z ™| a a(b—7z)

Z(x) p 2 - 2
w20 ) - @
x| >a
/@) -
where f(%) = cosh™! =

Method: Westergaard Stress Function (Integration of page 4.5)

Accuracy: Exact
Reference: Tada 1985



108 Part III 4.7a

Crack Opening Profile:
A 1| bx—d X n\’ a\’
2v(ic|,20a)—ﬁ{(b—x)cosh =) + ;\/(;) —1\/1—(;)

Opening at x = b:

2
8, =2v(b,0) :%{lng—i— (g) —1}

Relative Vertical Displacement along y-Axis at Infinity:
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Relative Rotation at Infinity:

2
9= () 1o (Z{M} )
wE" |a a a b oo

Method: Westergaard Stress Function (Integration of pages 4.5 and 4.5a,b)
Accuracy: Exact
Reference: Tada 1985

NOTE: 1. Always K, , <O0.
2. No surface interference (x < —a) was considered.
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4.8

Z0 | o fr Y @’ T [t
_z p( tanh ' b)__ [ tanh a |x| > b
Im{%(();))} ”{3}{ <C°th_1> I (afxy ”(Coth") (¥/a) -1 (“S|x|<b)

Method: Integration of page 4.6 or Superposition of page 4.7
Accuracy: Exact

Reference: Tada 1973
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_2p 2 2
K]+a \/ﬁ b a

Crack Opening Profile:

2 2
20 (x,0) _8 b tanh " 1—(4/x) x| tanh (*/a) —1 a<|x[<b
' nE’ coth™' _(a/p)’ coth™" 2 x>b
e 1—(a/p) (/o) -1
Opening at |x| = b:

8pb b

+ =——/{n—
2v(x b,0) — Ena

Relative Vertical Displacement at Infinity:
_ 8pb -1b a\? |,
2vso —W{COS}I P 1-— (Z) }(— 2v(x — 00,0))

Method: Westergaard Stress Function (Integration of pages 4.6 and 4.6a)
Accuracy: Exact
Reference: Tada 1985
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z=x+1iy

Z] (Z) 1 P 1

Zn(z) 0 ==10Q 15—

Z]]] (Z) T a —2z
Z (2) 1 P -1z
E]] (Z) - ; Q sin Z
Zy (2) T

Zr(x P
{ ZIII(( )) } 1 Q}cosh_lf
Z (x) T T

|x[>a

Methods: Special Case of page 4.3 or page 7.1 or by Stress Concentration Factor
Accuracy: Exact
References: Neuber 1937; Winne 1958; Paris 1960, 1965; Sih 1964
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TP

V(O,Y)
t(0,Y)
2Vv(x,0)

_QNJ

Crack Opening Profile:

4P
2v(x,0) = —cosh ol
t[>a E’ a

Vertical Displacement at (0, y):

2P L -1y
v(0,) = sinh i =
a +y

where

(I+v) plane stress

Q
Il
——
N|— DN—
/N
—
|_

—1/) plane strain

Methods: v Reciprocity (see pages 4.3a and 4.6a) or Paris’ Equation (see Appendix B)
Accuracy: Exact
Reference: Tada 1985
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z=x+1Iy

Methods: Westergaard Stress Function, etc. or by Stress Concentration Factor
Accuracy: Exact

References: Neuber 1937; Paris 1960, 1965; Benthem 1972
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A N\
M
9

Y
2V(x,0)
W == — 0
Yy _—————""2Z2a °© a = *
e/z/é
\-/
2 M /
Kyt =M VT
T 4
Crack Opening Profile:
8M 2
a0 -202 - (9

Relative Rotation at Infinity:

o 8M 4K [ [2v(x,0)
CaE'd VEE'Va\o L xS

Method: v, 6 Paris’ Equation (see Appendix B)
Accuracy: Exact
Reference: Tada 1985

NOTE: No surface interference (x < —a) was considered.
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4.11

-a 0 a
(Al
T
z=x+1iy
Zi(2) 1 Psiny — Qcosy 1
Zy(z) » =—=< Pcosy+ Qsiny —
Zpy (z) T T a —z

QN

_71(2) | [ Psiny — Qcosy ,
Zn (z) ¢ = =~ Pcosy+ Qsiny »sin
T

K; 1 Psiny — Qcosvy
{KII }:\/_ﬁ_a Pcosv;—Qsinv

Q=

Zi(x) 1 Psin’y—chs'y .
Im Z”(x) == Pcos'y—;Qsm'y cosh

Method: Superposition of page 4.9
Accuracy: Exact
References: Neuber 1937; Winne 1958; Paris 1960, 1965; Sih 1964
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where I'(v) = Gamma Function (See Appendix M)

Method: Integration of page 4.6
Accuracy: Exact
Reference: Tada 1974
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4.13
tv(o,\/)
Y
2v(x,0) ( 2V(=<0)
P P ‘
J-ai-z———ma T ;

X, :P(l —a) X0

2
a —xO
Crack Opening Profile:

2
[x|>a I (xo/x)
8P(1 —a) ., ~1xg
2v(00,0) = 5 -

Displacement at (0,y):

A=) (N [ i
V(O,y) - 7TE/ (1 yay) { (y/b)2+l t y }

Relative Vertical Displacement at Infinity:

2vao = v (0,00) —v (0, —00) = 2v (0, 0)

g

Method: Integration of page 4.6; Paris’ Equation (see Appendix B)

where

(1 +v) plane stress
(ll_lj) plane strain

B|— Do—

Accuracy: Exact
Reference: Tada 2000
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4.14
(A)

o__ < .
- — _...O"
—— —— ——

—2a— é ~a]

(B)
72, 2z -9

- — -

- —— -

_; - 7. (o)

e 2 Z A Z%

% “o7 =~

K; =0

1
K]] :Z(T\/ﬂ'a

Method: (A) Special (Limiting) Case of page 21.1 or 21.3; (B) Superposition of (A)

Accuracy: Exact

Reference: Tada 2000

119
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Thin Rigid Wedge
— S _Th
ANNNNNY—=" o a— S_th
-b b
X, E'h T

! . T 2kK(k)Va

X __E'h VE
s 2kK(k)\b

m@n):z41—ﬂﬂk?

a<|x|<bh K( k )
where
E plane stress
E' =
E/(1 - I/2) plane strain

k=y1-(/p)
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¢ dy

Flo )= [ ——2

’ /0 \/l—kzsinzgo
K(k):F(W/27k)

Method: Westergaard Stress Function (or Negative of page 5.21)
Accuracy: Exact
Reference: Tada 1974

NOTE: For K(k), see Appendix L.

The Westergaard Function is

B E'hb 1 1
2K (k) 2_2VE

z —a V4

Zi(2) =




122 Part III 4.16

Thin Rigid Wedge f b P}

B E'h
PUT0B(K(k) — E(k)}

- E'hb
P Z{sz(k) —a21<(k)}

ER PEK)-dK(K)| 1 T
KL= {T+p b KK (6 \/%

K, = {‘?“b(’““ ‘E("))} TR ﬁ

2u(x0) = {1 - BB L2 kb, k)~ ECOF (. £))

where { E plane stress
E =

E/(1 - I/2) plane strain
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2 2
/ 2 -1 b —x
k=1\/1-(4/p), ¢=sin b2 7

—a

K(k)=F(T/2, k)

P dsﬁ
F((p,k):/ ﬁ,
0 /1 —k"sin" ¢

Emk):/o V1- K2 sil g dp, E(k) = E(7/2, k)

Method: Superposition of page 4.14 and page 6.1
Accuracy: Exact
Reference: Tada 1974

NOTE:
1. In (I), when p > p,, separation of contact surfaces occurs near x = 15, and when p < p,, crack closure occurs near

x = Ta.

2. In (), when p > 0 (remote tension), separation of contact surfaces occurs for large |x|, and when p < p,, crack closure
occurs near x = Ta.

3. For K (k) and E(k), see Appendix L.

The Westergaard Function is Z,(z) = Z,(z) + Z,(z)
p.4.16 p.4.15 p.6.1 (replace o by p)
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Zi(2) o
)1
Zyi(2) ul
K; g
1)
Ky T

Z o
Im{ ng; } = { T } a—x
7111 (x) Ty

[x|<a

Methods: Westergaard Stress Function, etc. or by Stress Concentration Factor
Accuracy: Exact

References: Griffith 1920; Westergaard 1939; Irwin 1957, 1958a; Paris 1965, etc.
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-
Ol
-
K; = ov/ma
Crack Opening Area:
4= 2(;7r/a
Crack Opening Profile:
40 /2 2
2v(x,0) =—=\a —
|x|<a E
Opening at Center:
4
8 = 2v(0,0) = —2

Additional Vertical Displacement at (0,y) due to Crack:

20 2 2 y
v(&y)zi(\/a +y —y) 1+a0———

a2 -i-y2
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where

(1 +v) plane stress
(IL—V) plane strain

DN— D=

Method: Paris’ Equation (see Appendix B)
Accuracy: Exact

Reference: Tada 1985

NOTE:

v(0,y) is the displacement at (0,y) when uniform pressure o is applied on crack surfaces.

5.1b
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K; osiny
{ Ky } ={ ocosy psiny-/ma
K T

Method: Superposition
Accuracy: Exact
References: Paris 1965; Sih 1965a
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5.3

7 al |

Zo

G

z°=x°+.'.y°

X

Kyo = (Kr —iKy),,

+

:wlﬁ#r{@”’)l(ﬁ—
zy—a

where

o8]

—v
“+v

K=
{ 3 — 4v plane strain

plane stress

—

Method: Muskhelishvili’s Method
Accuracy: Exact
References: Erdogan 1962; Sih 1962a

(Q-iP)Go— z0) Hi(1 £r)M] }
(Zo—a)\/Z, —d
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129

K — 1 P a+b+ k=1 0+ Ma
+£_2\/ﬁ a—>b K+ 1 (a_b)1/a2_b2

1 a+b k—1
= - P
K 2\/ﬁ{Q a—b (n+1> }

where

98]

—v
“+v

kK =
{ 3 —4v plane strain

plane stress

—

Method: Muskhelishvili’s Method
Accuracy: Exact
References: Erdogan 1962; Sih 1962a
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Kpey =3 = pa(sin ™ Smsin 21— @/ 51 - 0r)” ) + (B Jate- )]

where

L { 1 plane stress

3 —4v  plane strain

Method: Muskhelishvili’s Method (Integration of page 5.4)
Accuracy: Exact
References: Erdogan 1962; Sih 1962a
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P
Y LQ
Zo
2° = Xo+ i’o

z=x+1y

- )
1(z) | @ + M2\ z—2 Z— % S -d
(0o @ (= =

(1 + v) plane stress

where

o= D=

(-11—1/) plane strain

Method: Westergaard Stress Function
Accuracy: Exact
References: Tada 1972a, 1973
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5.7

z=x+ Iy

2 -
a —2Zz

0

() - 2] (651

2

-z

0

. ) I
) i@y

Ziz)l _1 [P _ i] | -d a2 -d
{72(2)} G {Q} {1{_’_}ayo Mo {tan a —zé ot a —23

where
" {% (1 4 v) plane stress
=91/ )
> (—1_1/) plane strain

Method: Westergaard Stress Function (Superposition of page 5.6)
Accuracy: Exact
References: Tada 1972a, 1973



58

Two-Dimensional Stress Solutions for Various Configurations with Cracks

133

z=x+ 1y

Zr(x) 1 (P _ L |d =X
I {711(?6)} T {Q} { {+}ay03_} tonh a +y,
[x|<a
2 2

1 (P 1 a2 x y a X

_ - — + 0 —

__{ } tanh 7 21_}& 7 24|22
T 0 a +y, X 4y, \a +y,



5.8a

134 Part III

where

(1 + v) plane stress

Nf—  N—=

1 .
_1—1/) plane strain

Method: Westergaard Stress Function, etc. (Special Case of page 5.6)

Accuracy: Exact
References: Paris 1957; Barenblatt 1962; Irwin 1962a; Tada 1970, 1973



5.8b Two-Dimensional Stress Solutions for Various Configurations with Cracks 135

Y
P

4 (OIYO)
2V(x,0)

Crack Opening Area:

Crack Opening Profile:

2 2 2 2 2

4P -1 — —
2v(x,0) = — [ tanh a2 x2 + 2y0 3 a2 x2
Ix[<a TE a +y, X +y, \a +y,

8o = 2v(0,0)

Opening at Center:

..o -la
sinh —+4«

_4r a
=— - -
mE Yo \/at2 +y§

g

Methods: 4, v Paris’ Equation (see Appendix B) (or v also from page 5.8)
Accuracy: Exact
Reference: Tada 1985

where

1 + v) plane stress

(L plane strain

—V,

DNf— D—
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v,y Y
(CAD)
‘P

2V(X,0)

N
~aW o%:; X

A

z=x+1y
P a
Zi(z) = ——
TN —d
— -1
Zi(z) =—cos -
P
K =——
! \/Ta
Crack Opening Area:
4P
A=

Crack Opening Profile:
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5.9a

Vertical Displacement at (0, y):

where

(1 + v) plane stress
(ITII/) plane strain

Q

Il
——
D= D—

Method: Westergaard Stress Function (Special Case of page 5.8 or 5.10)

Accuracy: Exact
Reference: Tada 1985
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z=x+ iy

Method: Westergaard Stress Function, etc.
Accuracy: Exact
References: Irwin 1957, 1958a; Erdogan 1962; Sih 1962a, 1964; Paris 1965
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139

Crack Opening Area:

Crack Opening Profile:

Opening at Center:

Vertical Displacement at (0, y):

v(0,y) = 7

where

K. =—
Tta Ta axh
4P
A= ? a2 — b2
P -1a —b
2v(x,0) = —cosh a al
|x|<a E | _bl
6y =2v(0,0) = — cosh™' %

2 2 2 2 2
2P -1 |a —b y a —b
/(tanh T ta5—— 2 2)

{ %(1 + v) plane stress
o =

1

2

(ITIZ/) plane strain

Method: 4, v Paris’ Equation (see Appendix B) or Reciprocity (see page 5.8b and page 5.9)

Accuracy: Exact
Reference: Tada 1985
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V4 P
= (*) 1 \/a2 ) + \/a2 s
Im Z]] (x) = — Q hl > > > >
= ™ \/a —x - \/a —-b
Zyr (x) T
[x|<a

Method: Westergaard Stress Function, etc. (or Superposition of page 5.10)
Accuracy: Exact
References: Irwin 1957, 1958a; Erdogan 1962; Sih 1962a, 1964; Paris 1965
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141

Crack Opening Area:

Crack Opening Profile:

2v(x,0) =

x| <a

Opening at Center:

Vertical Displacement at (0, y):

2 2 2 2
4P -1 |a =b y a —b
v(O,y):E (tanh > >+ a— 5 )

where

2P 1
VTa 2
_ (b/a)
P
A= % Py

8P [tanh '\ Jd —b a<|x|<b
7E" \ coth™' @ — ¥ |x| > b

P
8o =2v(0,0) = 8—cosh

g

SR

TE’

(I1+v)  plane stress

(_1/) plane strain

Method: Superposition (see pages 5.10 and 5.10a)

Accuracy: Exact
Reference: Tada 1985
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z=x-+1y

Z]] (Z)
Zy (2)

ZI(Z) 1 p L1 (12 —cz -1 a2 — bz Si1171 % — Si1171 g \/(12 — 62 - \/(12 - b2
=—<q sin —————— — + -
t

21(2) 1 {p}[ d -z i d—bz -lc -1b 2 2]
Znp(z) p==44 p|(z—¢)sin ————(z—b)sin +|sin ——sin —-)\z —a
{71’2@} | a=2) ()

Method: Integration of page 5.10

Accuracy: Exact
References: Erdogan 1962; Sih 1962a, 1964; Paris 1965
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143

z=x+ 1y

Z; (2) P in!
Z]]] (Z) t

R (IR

711] (Z ) t

SRR

Z1(x) 2 )7 _-1b
{0 |-l o]
x| =b

Method: Special Case of page 5.12
Accuracy: Exact
References: Erdogan 1962; Sih 1962a, 1964; Paris 1965
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Crack Opening Area:

Opening at Center:

8o =2v(0,0) = 7 {sin_1 g—l—gcosh_l %}

Opening at x = b:

8 b -1b b b
5b:2V(i_b,0):%{ 1—(;) sin la—zen;}

Method: 4,6 Paris’ Equation (see Appendix B) or Integration of pages 5.11 and 5.11a
Accuracy: Exact
Reference: Tada 1985
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145

g 0] (P
Ty (x,0)1=1{1
‘Cﬁ(’SO) t

IxI
a

Method: Integration of page 5.11
Accuracy: Exact
Reference: Tada 1973
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Y

oY) 5;()30) = Plé(Tl

K; =— pvma
Crack Opening Area:
2
g
3 E'
Crack Opening Profile:
4pa 2 /x\? -1a
2l 0) = T{ ~(3) + () cosh ‘}
Opening at Center:
4pa
6o = 2v(0,0) = —
0 V( ’ ) 7TE/
Vertical Displacement at (0, y):
2p a : y la 1 y la
v(O,y):my 1—|—<;) —;sinh ;—20[ —2_ZSinh 5
1+ (ﬁ>
Y
where
%(1 +v)  plane stress
o=
% ITIZ/) plane strain

Method: Integration of pages 5.11 and 5.11a or Paris” Equation (see Appendix B)
Accuracy: Exact
Reference: Tada 1985
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Y

"(OJY)

H%orI=p(1- 17

Crack Opening Area:

Crack Opening Profile:

Opening at Center:

Vertical Displacement at (0, y):

v(0,y) :% (1 - ay(%){(l —%) \/a2 +y2 —y(l —% gsinhq%)}

g

Method: Superposition of pages 5.1, 5.1a and 5.14, 5.14a
Accuracy: Exact
Reference: Tada 1985

where

(I+v)  plane stress

Nf— N—

11_1/) plane strain
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X
oy (x,0) p | x| v
Txy (X, 0) =449 <_> (’Y > _1)
Tyz (X, 0) t
[ <a
K] p T ﬁ
{KH}—{II}\/a (,),2)
K]]] t T (7 + 1)
where I'(v) = Gamma Function (See Appendix M)

Methods: Fourier Transform (Sneddon); Integration of page 5.11 (Tada)
Accuracy: Exact
References: Sneddon 1951; Tada 1974

NOTE:  For special cases of v =0 and v = 1, see page 5.1 and page 5.14, respectively.
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¥
( Y Gy (x,0)= P(‘—;\—), ¥>-1
"

2
)
Crack Opening Area:
yd ()
()
Opening at Center:
S I B -

where

I'(v) = Gamma Function (See Appendix M)

Method: Integration of pages 5.11 and 5.11a or Paris’ Equation (see Appendix B)
Accuracy: Exact
Reference: Tada 1985

NOTE:  For special cases v = 0 and v = 1, see pages 5.1, 5.1a, and 5.14, 5.14a.
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ANANES
Ky p=149¢Vva NGl
K]]] t (7 + 1)
where I'(7)Gamma Function (See Appendix M)

Method: Integration of page 5.11
Accuracy: Exact
Reference: Tada 1974

NOTE:  For special case of 7 = 0, see page 5.1.
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— y ~ ;
§ % 5or=pVI=GT} (¥ >-1)
P

en)
K; =pva TN
(3+1)
Crack Opening Area:
1£3
4 4pa2 F( 2 )
ENTT(342)
Opening at Center:
_ __4pa

where I'(7) = Gamma Function (see Appendix M)
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152 Part III

-
;: | ]
v
> 05
o) I | l I I
0] 0.2 0.4 0.6 0.8 .0
¥+

I+ 2

Method: Integration of pages 5.11 and 5.11a
Accuracy: A Exact; ¥ (7) curve is based on accurate numerical values.

Reference: Tada 1985
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z=x+1y

m {20 - {0 e 2]

[x]<a

Method: Integration of page 5.11 or by Stress Concentration Factor
Accuracy: Exact
References: Neuber 1937; Benthem 1972
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_pX P
o =Pk
2—
..P )’
' & (x,0)
— \
/, \\\ S
a X
V(x,0)
— 6y (x,0
oy(x,o) = —Y|§-——2-
resultant

—_———— eff\’/e(ct of crack
—_ X,0

X,0)= ————
ve Pa/E’

opening
— ——a——overlapping
1
Kiiy = i‘zp\/ﬂ'a
x> _1
x @) -3
o (1,0) = pld L2

@

2v(x,0) _pa, (f) 1— (f)

/
l+/<a E a

Crack Opening Area of Right Half:

2pa
Ax>0 - W
Method: Westergaard Stress Functions

Accuracy: Exact

Reference: Tada 2000

NOTE:  Crack surface interference was ignored. See page 5.18b for the effect of surface interference.
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| O;,(x,o)/p resultant
0;(X,o)/p closed

\

effect of 2 \(O;(x,o)/p effect of

crack '[,,* \ S crack
\F‘E— — s ———

-a o\ a X
surface

oy (%,
7( o)/P v (x,0) V_,_(on interference
resultant -1 ’E‘?? Pa/E ignored; see 5.18a
Crack closes from x = —a to x = —9/3.

w4 (--F) )2

Z/(2) =2 (:43)y e+ %) —a)

32
Ki = = (—) pVma=0.5443p\/ra; K; . _a); =0

p 2a\ [x+ 9
w0 =8 (r )T
x<—4/3,x>a
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5.18¢

Crack Opening Area:

2 37r a a
A=(2) BL —0.93082L
3) E E

Method: Superposition of pages 5.1/1a and 5.18/18a
Accuracy: Exact
References: Seeger 1973; Tada 2000

NOTE:  Compare with page 5.18a for the effect of crack surface interference.
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Y

1(0)Y)
80 v(X,0)

Crack Opening Area:

Crack Opening Profile:

Opening at Center:

2(1 —«)
wE' X0

80 = 2v(0,0) =



5.19a

158 Part 111

Vertical Displacement at (0, y):

1l -« -1
0,)) =—2p(1-apZ
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