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normalized prior structures as reported by Mr. Blum but the conditions are
sufficiently different to possibly account for the discrepancy. All of our w?rk
has becn done on 1.25-inch diameter hot-rolled bars, whereas the physical
heterogeneity existing in hot-rolled shapes may be sufliciently great to ?liow an
improvement on normalizing. Our own u{nrk on as-cast versus normalized cast
specimens would indicate no important difference in hardcnal_aﬂ:ry_. )

The authors were certainly as surprised as Mr. Jominy in finding such
substantial effects of time and prior structure on some of the alloy stecls studied.
Many of the time at temperature intervals used in production treating of large
sections could undoubtedly stand some re-examination in the light of these dz-%ta.
I addition, these results present a potent argument in favor of prior normalizing
of large sections. The difference in time at temperature between the surface l:md
center of a large section will produce a depth of hardness below expectations
from an amealed prior structure unless exceedingly long heating times are used.

The authors wish to express their appreciation to the discussers of this paper.

THE STRESS DISTRIBUTION AT THE NECK OF A TENSION
SPECIMEN

By P. W. BrIDGMAN

Abstract

By approxiwating to the contonr of a tension specimen
at the seck by a circle and by using a civcle to approxvimate
the lines of principal stress in the neighborhood of the neck,
the distribution of siress across the neck has been found
which rigorously satisfies the conditions of plasticity in the
conventional form of won Mises. The same solution also
applies with an error of only @ few per cont wien strain
hardening occurs af the anount found under actual condi-
tions. The solution differs qualitatively from the stress
distribution n an elastically strained specimen. In the
plastic specimen, the tension is greatest on the axis and
least on the periphery; the slress system consists of an
axial tension, wniform all the way across the neck, plus a
hvdrostatic tension, which is zero on the periphery and
ncreases to ils maximum value on the axis.

The effect of the varialion of tension across the section
is to make the mean tension higher than the true tension
of floww. Nusnerical values and curves are given for con-
verting one tension to the other. Under extreme condi-
tions recently attoined oxperimentally, the correction may
anmount to 40 per cent. The correction depends on a single
parameter, a/R, the ratio of the radius of the neck to the
radins of curvature of the contour of the neck. Under ex-
perimenlal conditions a/R is determined to a certain de-
gree of approximation by ihe reduction of area only, so
that the correction may be roughly applied given the re-
duction of area only.

There appears to be a close connection belween the
“cup amd cone” fracture often observed and the stress dis-
tribution at the neck. The brittle fracture on the axis is
associated with the hydrostatic tension prevailing there,
while the shearing fracture nearer the outer surface is
connected with the shearing stresses which become -
portant near the outer surface.
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associated with the Physics Department, Harvard University, Cambridge, Mass.
Mauuscript received June 10, 1943,
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THE stress-strain curve which is deduced from the ordinary ten-

sion test is properly a curve of average stress against average
strain al the neck. It is almost certain, howcver, that the stress is
not constant across the neck, and the qucstion arises as Lo whether
the variation is extensive enough to alter materially any deductions
that we make from the behavior of the averages, in particular our
deductions about strain hardening. A rigorous solution of the
problem in plastic flow involved here does not seem possible at the
present time. Apparently the only approximate soiution is that
of Siebel, " and this involves several doubtlul simplilications, which
will be referred to again later.

One might perhaps hope to get some hint as to a plausible order
of magnitude for the variation of stress across the neck from the
solution of the corresponding elastic problem. The elastic distor-
tion in the immediate neighborhood of the neck must be roughly
like the solution worked out rigorously by Neuber™® for a hyper-
boloid of revolution. One may draw the conclusion from this
known solution that probably if the reduction of area is ouly 50 or
60 per cent, which is of the order of magnitudc of the reduction at
fracture of ordinary ductile steels, the effecl of lack of uniformity of
stress distribution is not important. Recently, however, I have
found® that by conducting the tensile test in a fluid at pressures
of the order of 400,000 1b/in? reductions in area up to nearly 100 per
cent may be realized without fracture, and strain hardenings, calcu-
lated on the basis ol the average stress, may he realized up to a
factor of 3 or more. Under these conditions the contour of the
specimen at the neck may have such a small radius of curvature that
the clastic solution indicates variations of stress across the section
of several hundred per cent, and it obviously becomes important
to make an approximate estimate of the departures from uniformity
of 1he stresses in actual cases of plastic flow.

A complete solution should be capable of giving, among other
things, the shape of the external contour of the tension sample.
In fact, one might anticipate that one of the uses that could be made
of a complete solution would be to provide quick information about
the strain hardening curve from the shape of the contour. This,
however, seems impossible at present. The best that I have been

L I, Siebel, Berichte der Fachauschisse des Vereins deutscher Eiscnhuttenleute. Werk-
stoflausschuss, Bericht Nr. 71, Nov. 3, 1925,

2 H. Neuber, Beitrige fiir den achssymmetrischen Spanuungszustand; Thesis, Munchen,
1732,

3 P, W. Bridgman, American Scientist, 31, 1, 1943,
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able to do in the solution given in the appendix is to assumé the
external contour given, and to deduce a sct of stresses that satisfies
the conditions of plasticity in the immediate neighborhood of the
neck.

. . R 1
T'he factor <1 + 2 Z) log (1 + 7 %) and certain other related

data are given in Table . The inverse of the factor, which may be
called simply the '‘correction factor,” since it is the factor by which
the “uncorrected true stress™ is to be multiplied to obtain the
"“corrected true stress” is shown as a curve against a/R in Fig. 1

The “corrected true stresses” given by the present analysis are pro-
gressively larger than the “corrected true stresses’ that would be
given by Siebel’s formula.
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Table T

Inverse Correc_tion Sieh;l’s -

. . Factor, . Factor -
= 18 ﬁ) i ( Y la Ly} B
R ( a) 8\l zR T4+IR ¥ T
?ﬁ 1 (}73 1 (%BB 1054 v
K . B . .078
if 1.115 1.125 223 115
H 1.215 1,250 405 218
H 1,386 1,600 693 386
3 1,624 1.750 916 524

1.649 2.000 1.099 649

The corrections are quite appreciable even under ordinary
conditions of testing. Thus for a steel of approximately 0.45 carbon
content a representative reduction of area at fracture is 60 per cent,
and at this reduction a representative va'ue of a/R is 0.8. (ais
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the radius of the cross section and R is the radius of eurvature of the
longitudinal surface fibers, at the cross section of least diameter.)
Under these conditions F (the “flow stress.”’ or stress required for
flow in simple tension) is 15 per cent lower than %7 (the average
longitudinal tension), and therefore the strain hardening, calculated
without making the correction, 17.6 per cent too high. Under
greater strains, such as may be produced by pulling under hydro-
static pressure, the correction may change even the sign of certain
terms and thus change the qualitative aspect of the picture. The
change will be greatest with respect to fracture. It appears that
the fracture is essentially determined by the hydrostatic tension
on the axis, and this tension is large enough numerically, even in
ordinary cases, to demand that it be given as well as the longitu-
dinal tension in specifying the conditions of fracture in an ordinary
tensile test. This matter is elaborated further in one of the
symposia of this meeting. One important result remains, how-
ever, even after the correction is applied. After the first initial
stages of a temsion test, it is coming to he recognized that
the stress-strain curve is linear in the natural strain, that is,
the “uncorrected true stress” gives a linear plot against log. Ao/A,
Agand A being the initial and final neck areas. Experiments indi-
cate that over a range of conditions “porrected true stress" is also
linear. The subject requires further study, but at least I have
found no cases in which the corrected curve was not also linear
within experimental error.

In practise, in order to apply the correction, the radins of curva-
ture at the neck must be measured in addition to the other data
which it is now conventional to collect. This may be done by various
devices, but it would be more convenient if it should prove that
a/R is a function only of the reduction of area. There are present
indications that any departures of a/R from being a function of re-
duction of area only may be by amounts unimportant for purposes of
the correction. The matter demands extensive study over a wide
range of conditions, but in the meantime & curve is shown in Fig. 2
representing the average results of some 50 experiments on a variety
of steels. Most of these were on a 1045 steel, heat treat ments varyving
from anncaled to quenched and drawn at 800 degrees Iahr.,
but also included a dead soft 1020 steel, a silicon-manganese alloy
steel treated to a strength of around 300,000 1b/in® and a tough
nickel steel. At a value of log. Ag/A of 3.0 the extreme variation
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found in a/R was from 1.3 to 2.0. There scems no correlation
between the composition of the steel and departure of a/R from the
median curve. ILven brass and a bearing bronze were found to fall
in the samc limits as the steels. In the extreme case the correction
factor compuled from the directly measured a/R does not differ by
morc than 4 per cent from the factor from the median curve. There
are factors vet to be investigated. For mnstance, does the ratio of
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Fig. 2-—-Average Contour Factor B from a Number of
Expetiments as a Function of the “Natural Strain® ai the Neck

length to diameter of the original specimen aflect the valucs of a/R?
All the measurements referred to above were made with a value for
this ratio in the neighborhood of 3. However, in the absence of
direct measurements of a/R the corrected value of “‘true stress’”
obtained by assuming the a/R of Fig. 2 is doubtless better than
t}{c “uncorrected true stress.” To assist in making the reduction,
Figs. 1 and 2 have been combined to give Fig. 3, in which the cor-
rection factor is plotted against log, Ay/A. This curve is to be used
only subject to the precautions suggested by the discussion.

The solution has assumed that the hardening is constant all the
way across the neck, that is, it has assumed that the hardening is
not affected by the hydrostatic tension that acts in addition to the
stress Z%, at the boundary. The two last columns of the Table show
the 1-'atio of the maximum {(on the axis) and the average hydrostatic
Lens:mn to the Zz component of stress at the edge. Consider a
typical example in which F = 355,000 pounds per square inch for
a natu?al strain of 2, at which a/R is approximately 1.5. fT,/I7 is
approximately 0.55, which mcans a hydrostatic tensi—on on the axis
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of approximately 196,000 pounds per square inch, and an average
hydrostatic Lension over the section of 106,000 pounds per square
inch,  Now I have found by experiment that the flow stress when
necking begins is increased from 10 to 15 per cent by a hydrostatic
pressure of 355,000 pounds per squarc inch. This means that under
the condition in our example the flow stress would be decrcased by
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Fig. 3-—Correction Factor for Reducing Average Teusile Stress to
“Flow Stress,” as a Funetion of Natural Strain at the Neck, Assuming
a Mean Expecimental Connection Between the Shape of the Contour ot
the Neck and Reduction of Aren.

some 3.8 per cent by the hydroslatic tension prevailing across the
neck. This correction is in the opposite direction from that already
applied; it is so small that perhaps it may be neglected in compari-
son with other uncertainties.

The total tension on the axis differs from that at the outer edge
by Ty (the radial tension on the axis), that is, the ratio of the axial
to the peripheral tension is 1 + fto/F. In Fig. 4 this is plotted
against log. Ag/A, assuming the same cmpirical relation between
a/R and log, Ay/A that was uscd in consiructing Fig. 3. The
practical use of the figure is therefore subject to the same precautions
as use of Tig. 3. This curve will be of service in computing the
fracture stress, since as will appear in the discussion presently,
fracture is doubtless initiated on the axis.

Finally, we consider certain applications that may be made of
our solution to the problem of the naturc of the fracture. The
maximum shearing stress al the neck, assuming the solution given,
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1s constant across the neck, has the value 7%./2, and is equal on the
r—zandr — 6 planes. That is, at every point there is a cone of
shear. The shearing stress in the r — ¢ plane vanishes. Because
of the geometrical limitations any actual slip of the material must
probably be on the r — z planes. The greatest shearing stress,
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bowever, is not at the neck. Referring to Fig. § of the appendix,
a‘nd 1:{.-v;zliin;: the houndary conditions, at the point P there is a
shcaring stress along the plane bisecting AB and CI of #2/2 cos? o
and along the plane cutting the plane of the paper in ("IJ at :u;
angle of 45 degrees of Y [72/cos® & — 66). The sign of 80 at points
on the boundary not on the neck would seem to he in some doubt
50 that it is not at once obvious which of these two shearing str&-ss(-s:
is the larger. (Geometrical limitations, however, would scem 10
:ifrmand that actual slip of the material take place in the first plane,
bisecting AB and CD. This agrees with observation: slip on the
other plane takes place less commonly, and even then usually onlv
when slip can spread right across the nock to a symmetrical ])l’}in“..
on the other side. .

) The shearing stress 72/2 cos? o is composed of two faclors, the
first of which, 7z, decreases on receding from the neck, and the
second of which, 1/cos® &, at first increases. The variation of #% 13
not fixed by the analysis above, only the average zz. I{ the neck is
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abrupt, 1/cos? « increases so rapidly in the neighborhood of the
neck that it swamps the deccrcase of 2z, and also any plausible
decrease of the actual zz. Observation of many tensile fractures in
necked samples shows that at the outside failure is frequently along
a shear plane, and this shear never issues at the neck itself, but a
little removed from it. To give a numerical example, the specimen
for which a/R was 2 at a rcduction in diameter to onc quarter had
a maximum zz/cos? @, assuming zz uniform across every section,
14 per cent greater than at the neck. The point of maximum was
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Fig. 3—Certain Geometrical Re-
Tations Used in the Analysis (p. 362).

displaced along the axis from the neck by about 0.4 of the neck
diameter. With regard to the assumption of uniformity of 7z it is
probable that as one proceeds away from the neck toward the elastic
region zz will tend to assume the property of the elastic solution,
that is, to have the greatest value at the outside surface instead of
on the axis as in the full plastic region at the neck. The effect of
this direclion of variation in the lack ol uniformity of 2z will accen-
tuate the tendency of the shearing stress to have its maximum value
away from the neck.

The conclusion that at the neck the tension is greatest on the
axis and least at the outside, instead of inversely as in the elastic
case, has interesting reactions on our picturc of the mechanism of
fracture. We have seen that the stress on the axis may be regarded
as differing from that at the edge, where it is a simple tension, merely
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by the addition of a hydrostatic tension. This superposed hydro-
static tension will havc two effects.  In the first place there will be a
reduction in the tension component in excess of the hydrostatic
stress requircd to produce fracture. It is true that this has not
been established by direct experiment, but it has been established
for the grades of steel that permit necking that the excess tension
component at fracture is increased by hydrostatic pressure, and
since these effects are usually linear, we may expect a decrease with
hydrostatic tension. In the second place, it is knpwn that hydro-
static pressure increases ductility, so that a hydrostatic tension
may be expected to decrcasc it. It may be that these two cffects
are not completely independent of each other, but in any event they
are both in the same direction, and conspire to produce the brittle
tensile fracture at the axis which is usually shown by the grades of
steel that exhibit necking. Although there has in the past been
diffcrence of opinion, it seems to be becoming accepted now that
the fracture of a necked spceimen starts on the axis. This is shown
convincingly, for example, by a photograph on page 55 of Gen-
samer’s Strength of Metals under Combined Stresses.

Our solution demands that the tendency to brittle fracture
diminishes as one recedes from the axis. On the other hand, the
tendency to shearing slip increases at distances from the axis. On
the axis the geomctrical conditions are unfavorable because slip
will have to occur on curved conical surfaces, whereas toward the
outside the slip occurs more nearly on planes. Another important
featurc in the geometrical situation is thal shearing fracture cannot
get initiated unless there is freedom of slip all the way across the
slip planes; slip cannot start if one end of the slip plancs is anchored
on the axis, whereas a tensile break spreading from the axis provides
a possible point of initiation for shearing slip. It is the balance
between the two tendencies to tensile and shearing fracture that
gives the ordinary “‘cup and cone” fracture.

This view would demand that the fracture of a necked test piece
begin on the axis as a tensile break, where the tendency fo tensile
fracture is the greatest, and also that the tensile break be situated
at the narrowest part of the neck. This latter agrees with observa-
tion; longitudinal sections made through a number of “cup and
cone’ breaks shows that the flat bottom of the cup is always located
at the narrowest part of the neck. The tensile fracture travels
toward the outside until the geometry is so modificd that the shear-
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ing fracture can take over. DPrecisely what the critical condition is
that determines when shear is ready to take over is a subject for
future investigation.

If the pulling is donc in a medium under hydrostatic pressure
the general ductility increases, the tendency to brittle tensile frac-
ture diminishes, and the shearinyg tyvpe of fracture will become more
prominent. This agrees with recent observations, as yet unpub-
lished, that above a certain pressure the fracture becomes almost, if
not entirely, shearing in character.

Appendix
Summary of Principal Symbols Used.

The stress system is referred to conventional cylindrical co-ordi-
nates, r, §, and z, and the notation for the stress components is that
adopted, for example, in Love’s Mathematical Theory of Elasticity.
In particular, the stress components are: T, 86, 72, 0z, 77, and ré.
Other symbols are:

a, outside radius of the cross section at the neck.

R, radius of curvature at the neck, of the section through the
neck containing the axis

T, “flow stress,” tension at which plastic flow oceurs, the two
other principal stress components being zero.

A, initial cross section of the tension sample.

A, final section at the neck of the tension sample.

Derivation.

Certain necessary conditions are imposed on any solulion by the
stress equations of equilibrium. The problem may be assumed to
have rotational symmetry about the axis. Using ordinary -cylin-
drical co-ordinates, this means that all derivatives with respect to
¢ vanish, and the r8 and 8z stress components vanish identically.
The usual three stress equations of equlibrium reduce to two:

o | IR W60

c‘lr+-67+ r 0 e
awm | e ™ N
Frly

The external curved surface is free from stress, and the boundary
conditions become:
i? Sasaal S i Sl:” & = } at external surface. (2)
Zcosa — Z2sina =0
Ilere « is the angle between the generating line of the external
surfacc and the axis, as indicated in Fig. 5. The conditions at

the surface may be rewritten as:
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ft = 22 tan® o
S ey } at external surface. (3
2 = 77 tan «

At the external surface the planes of principal stress are: (1) the
plane of the axis (plane of the paper in Fig. 5) across which the nor-
mal stress is 08, (2) the tangent plane (perpendicular to the plane of
the paper and with tracc AB in Fig. 5) across which the normal
siress is zcro, and (3) the plane perpendicular to (1) and (2) (trace
CD in Fig. 5) across which the normal stress is 22/cos? a.

At any section perpendicular to the axis,

r j;] r 72 dr = Load = constant (4)

The conditions simplify at the neck. It is assuwmed that the
specimen 1s symmetrical on both sides of the neck. Hence at the
neck:

[

B Q forall r

also =10 forall r » at the neck. (3)
e = 0
ﬁ‘n = 5-'35

[

A stress symbol with subscript ““a’ denotes the value at the
external boundary, subscript 0 at the axis. The first two condi-
tions of (5) arise from symmetry. The third cxpresses the [reedom
of the external surface from stress. The last of the four conditions,
which also holds at all points on the axis, is necessary in order to
avoid infinities in the first of equations (1).

_ Let us now inquire what is a plausible solution at the neck for fr;
00, and 2z, fZ not being considered. If 7z is eliminated between Lhe
Lwo stress equations, a single equation resulls for the three stresses:

D ey = o4 [ OB -
()_r(l 11)—66—|—ﬁ) T fatt (6)
If we put
7 = f,(r) + Y4z2%.(1), (7)
0%z . . L
where fu(r) = ok fy and f; are subject only to the restrictions:
a
I A fiir) rdr = Load (8)
and
a a S .
R 7= — /:) fa(r) v v, 9)

where R is the radius of curvaturc of the contour at the neck and a
18 now the radius of the ncck. REquation (9) comes from applying
condition (4) to a planc section just above the neck.
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Subject to these conditions, a great deal of latitude is possible in
the solution; in facl, having assumed f, and f; subject to restrictions
(8) and (9), one may assume any T subject only to the condition
&, = 0, and then solve (6) for 6. ‘The problem is to pick out
from this infinity of solutions those which satisfy the plasticity
conditions.

We first proceed on the assumption of no strain hardening.
The plasticity conditions are now of two sorts. First there is the
condition that the material be in the plastic condition all the way
across the neck. We assume the form of von Mises:

(fF — 66)2 + (66 — 72)? + (& — 1)? = constant, independent of r at the u;);:(l)cj

Second, there are the flow conditions, written in the accepted
form in terms of the strain velocities:

& = pliT — 350 + z"z)l}
¢ = ploe — Y5 (az + )] (11)
& = Blo — (7 + 60)]

In the general case the coellicienl 8 of these equations is neither
a material constant nor a function of the physical parameters such
as the stresses. It is rather a freely disposable function of the
co-ordinates and varies from problem to problem with the geometry.
The equations mercly cxpress the isotropy of flow at any single
point.

If it is not possible to find a set of stresses satisfying all the condi-
tions one may draw the conclusion that the state of affairs at the
neck is of necessity nom-isotropic. Conversely, if a solution is
possible, then an isotropic state of affairs at the neck is at least not
ruled out.

Since the plasticity equations hold across the neck, we may par-
ticularize by writing them for an external point and for a point on

the axis. Remembering that 11, = 0, and ¥y = 80, these become:

28802 + 25%.% — 200a72a = 20007 + 2722 — 4004720 (12)
G, = Al—15(00 + )] G = 8l—YETe + ‘3000
o, = pléde — V472 &0, = p[—ls%2 + 34084 (13)
(':.‘ = @[ﬁn - }é@ﬂ]' ’é‘u = Blz%e — 090]

The condition of isotropy of flow is automatically satisfied on the
axis, but elsewhere special adjustment will be necessary to meet
both the flow conditions and the plasticity condition of von Mises.

Belore proceeding further it will pay to look at the numerical
values, to see whether we are concerned only with departures from
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linearity which may be trcated as small, or whether they are of a
larger order of magnitude. If the tensile specimen is pulled to a
reduction of arca of about 94 per cent, it has been observed in the
case of one experiment that a/R at the neck is approximately 2.
Reductions up to nearly 100 per cent have heen observed, so that
values of a/R in excess of 2 are Lo be expected. If we assume
A222/dz* = const, then the stress equation (6) becomes

2 (e 5 — % 2 o (14)
For the sake of example put a/R = 2, and wrile the 2quation for the
outer edge:

E%(r : ﬁ‘)|.~ = 68, = 272 (15)
[t would appear then that in general 88 and 7+ must be of the same
order of magnitude as 7z and that we cannot hope to get an approxi-
mate solution of the flow and plasticity conditions by treating 86
and Tt as small compared with Zz.

In searching for a qualitatively satisfactory solution it is natural
to start with the solution for the elastically strained body worked
out by Neuber for the case of a solid of revolution whose outer sur-
face is a hyperbola. We may take this as approximating our prob-
lem in the neighborhood of the neck. In the clastic solution zz is
not uniform at the neck but has its smallest value at the axis and
then rises continually, at first slowly, and then more abruptly
toward the outer surface, wherc it reaches its maximum value. The
total extent of the risc and the abruptness of the upturn hoth
increase as a/R increases. For values of a/R between 0 and 2 the
maximum value of 72 differs from the average 7z by approximately
the fraction 4a/R. On the axis, 88 and 7 are both positive, that
is, of the same sign as 2. At first 7 and 86 both increase on leaving
the axis; It presently passcs through a maximum and plunges to the
value zero at the outer surface with an abruptness increasing with
a/R. 80 rises continually toward the outer edge with an abrupt-
ness the greater the greater a/R. In the range from 0 to 2 for
a/R, 60 at the outer edge is roughly 14 (a/R)ZZuer.

If one tries to find a solution of the stress equations of equi-
librium (1), which of course must always be rigorously satisfied,
which has the qualitative aspects of the elastic solution, one will
find thal the plasticity and flow conditions cannot he satisfied.
Some experimenting with simple algebraic forms that have the
requisite rough qualitative behavior, combined with a study of the
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demands expressed in equations (12) and (13}, will, I think, con-
vince one of this. Furlhermore, since the fi’s and 68’s are of the
same order of magnitude as 7z, the failure of the elastic solution to
meet the plasticity conditions is by a large amount. Large failures
of isotropy are necessary if the stresses are to have the same quali-
talive configuration as in the clastic case. But the isotropic condi-
tions can be maintained by a change in the qualitative picture. The
isotropy of flow at the outside demands, according to (13) that
#6. = 0. DBut already 7, = 0, and in all cases ¥y = #o. It sug-
gests itself therefore to try setting f& = 88 for all values of r.  This
automatically ensures the isotropy ol (low at all points of the neck.
If we put 88 = 7 in the equations of equilibrium in the form (6)
and integrate, we get:

~ - e l ‘d_’&?’, i i )
o= /: {1ﬁ T (\1} d (16)

We are free to assume any form for 822z/dz® subject only to the
restriction (9). Equation (16) shows that for any ordinary smooth
variation of 8%zz/dz® with r, T is going Lo be positive, and there is a
two dimensional hydrostatic tension on the axis, as in the elastic
case.
Inspection now shows that the von Mises plasticity condition is
satisfied for all valucs of r if we set
22 = %Z. + 07 (17}

We are free to do this because 77 is not yet fixed, and 2z is subject

to the single condition 2r /0 ¢ (2 + f)rdr = Load.

It is to be remarked that under these special conditions the von
Mises plasticity condition becomes identical with the maximum
shearing stress condition.

The stress system which we have just found consists of a uni-
[orm tension 7%, in the z dircction all the way across the neck, plus
a superposed hydrostatic tension (three equal tensions along three
mutually perpendicular directions) increasing from zero at the
outside surface to fTo on the axis.

A complete solution rcquires that the coefficient g of the flow
equations be determined. This is to be so determived that, given
the stresses, the components of flow satis{y the conditions imposed
by the geometry. In general, when there is radial symmetry and
the clongation along the axis, e., is constant, the radial displace-
ment p must satisfy the condition:

- &L c (18)
p = 2|+r (18]
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In this particular situation, because the material occupies the
axis and infinities must therefore be avoided on the axis, ¢ = 0,

c, . . .
p=—3T and e. = ey = —1l4e,. That is, the strains are uni-

form all the way across the ncck, and this holds independent of
time. The flow equations must therefore also demand a uniform
flow, and the coefficient 8 of equations (11) is in this particular case
a constant all the way across. At any instant of time the equations
for the strains e, es, and e, have thc same appearance as the flow
equations. That is, the dots may be removed from the lefl hand
side of equations (11). The coefficient # may still be a function of
time, but its precise value is of no particular interest to us.

How must this solution be modified when strain hardening is
considered? The question is not academic, hecause we have seen
that it is possible to increasc the average flow stress by a factor of
at least two or three under exireme but realizable conditions of
necking. Turthermore, the phenomenon of necking is itself a strain
hardening phenomenon and only occurs when the slope of the strain
hardening curve decreases below a critical value.

In general the whole mathematical set-up must be modified
when there is strain hardening. The general case may he very
complicated; we simplify by assuming the strain hardening Lo be
isotropic. Under Lhese conditions equations of the same formal
appearance as (11) remain, but thesc arc now equations on the
straing and not on the strain veclocities, and represent the strains
reached asymptotically in time under constant stress. The coeffi-
cient 8 now becomes dcterminate in terms of material constants
and such physical parameters as the stresses or strains. The
coefficient § must be consistent with experimenial stress-strain
curves for all particular and possible stress svstems. How, or
whether, 8 can be uniquely determined {rom a single type of stress-
strain curve, as, for example, simple tension, need not be discussed
here. It is obvious, however, since 8 has now become deprived of
its role as a disposable {unction, that it is no longer possible to
satisfy all the conditions of equilibrium etc. if therc is an independ-
ent plasticily condition analogous to (10) still to be satisfied. Any
equation of the type of (10) which persists in the strain hardening
case must play the role of a mathematical identity expressing con-
ditions already inherent in the three equations for the three principal
strains. Under such conditions the right hand side of (10) now
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becomes a variable, a function perhaps of the strains, determined
so as to be cousistent with experiment.

In the special case where the strains are uniforin the whole
picture very much simplifics. The solution we have just found,
assuming no strain hardcning, continues to apply to the strain
hardening case if we are at liberty to assume that at every stage of
the necking process the 8 of equations (11) is constant all the way
across the neck and that the right hand side of cquation (10) is
similarly constant all the way across. In the solution we have
found the strains arc constant all the way across, and the stress
system is a tension constant all the way across with a variable super-
posed hydrostatic tension. If the superposed hydrostatic tension
has no effect on the strain hardening, the physical conditions would
be met and we could take over our simplc solution. Now it is
known that to a first approximation such is indeed the case; numeri-
cal values have been given in the body of the text indicating how good
an approximation may be expected. We shall assume in the following
that our solution applies also to the strain hardéning case, with an
appropriate change in the meaning of the right hand side of (10).

It is possible, therefore, to mcet all the conditions, assuming
isotropy of flow across the neck, with the qualitative difference
compared with the clastic case that 7z increases toward the axis
instead of decreasing. Such an increase would demand only a very
small excess yielding of the material near the surface and further-
more meets certain qualitative demands imposed by the nature of
the fracture, as will appear later. It therefore is not unplausible.
The steps by which this stress system is set up are doubtless some-
what as follows. Yicld starls at the outside surface, where the
tensile stress in the elastic condition is a maximum. A very slight
amount of plastic (low is sufficient to redistribute the stress approxi-
mately uniformly. The plastic condition works its way toward the
axis; as the material in the neighborhood of the axis assumes the
plastic condition the two dimensional hydrostatic tension (ff,
= 68, = positive quantity) remaining from the previous elastic
condition produces extensional creep along the axis and so an addi-
tional component of tension along the axis.

We still have to find an explicit solution; with the formulation
above this will depend on finding the proper expression for 9222/9z%
which is still at our disposal. No dircct mcthod for obtaining the
proper expression presents itself; another method will therefore be
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adopted for obtaining a differential equation for the stresses at the
neck. Fig. 6 represents the state of aflairs in a neighborhood close
enough to the neck to permit the external contour to be represented
by a circle. The radius of the neck, a, and the radius of curvature,
R, of the contour at the neck, are given. At the external surface
we have scen that one of the lines of principal stress is normal to the

Fig. 6—The Geomctrical Analysis Used in
the Approximate Solution in the Neighborhood
of the Neck.

surface, and we know that on the axis the lines are normal to the
axis. We assumec that in the immediate ncighborhood of the neck
the complete line of principal stress is a circle, with center on the
axis. Consider the particular stress circle that cuts the contour at
such a point as to subtend the small angle ¢ at the center of curva-
turc of the contour. Thc radius of curvature, R’, of the stress circle,
is a/p. Consider now a point at the neck distant r from the axis.
Let the length r subtend an angle ¢’ at the center of the circle R'.
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, T . . .
Then ¢’ = 2 Through the point r, perpendicular to the radius,

there passes one member of the family of lines of principal stress of
which the external contour is another member. This line is per-
pendicular to the radius r and the circle of radius R’. We may
assume that this line is also a circle, and we might compute its
radius. It happens, however, that to the order of small quantities
in which we are interested this refinement is not necessary, and it
will be sufficient to treat this line of principal siress as a straight
line perpendicular to the radius at r. Consider now the element
of volume bounded by two axial planes including between them the
small angle 8, by the cylinders with radii r and r + dr, by the plane
perpendicular to the axis at the neck, and by the spherical surface
of radius R’. By construction the forces across the [aces of this
element are entirely normal and are given by the principal stress
components. The condition that the net component of force in
the r direction on the six faces of this element vanishes gives the
equation:

(u, + N f‘.lz) sin ¢ (1 + ~2-) By

—f-h rvﬂ—(ﬁ‘«{»dl% (r 4 diyh’ -6 + 80 sin 6-h - dr

We have further:
I R¢ + R'[cos ¢’ — cos o
b = Re 4 R'lcos (¢ + de’) - cos ¢l
Cxpansion of this equation, keeping only terms of the lowest order,
UIVOS
’7]? = ﬂ’[if S 7Ri - r'ﬂ[R-}—%“’ . r-’]

dr i

74 [R + %"‘-"' :‘] (19)

Into this equation involving the three stress components we
may now substitute the particular rclations given by our analysis
above, namely, 08 = T, and 7z = ft + 22.. 72 is the low stress at
the cxternal surface where the other two components of stress
vanish, and is therefore the flow stress for an ordinary tension test
at the particular elongation under homogeneous conditions. We
replace the notation 72, by F, for flow stress. The equation (19)
now becomes an cquation for the single component rt:

e 2 _ .2° .
¥ r +%§»~—-_1J +IFr=0 (20)
dr | 2 a a

The variables are separated, and the equation may be at once
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integrated, giving, together with the boundary condition, the
closed solution:

- a* + 2alg — r?

fr = F log 3aR T o
. a? 4 2aR - 2 <
zz=F[1+1og 3R ——]

The connection with the load is given by:

Load = ﬁ]a 2rrézdr = wF(a* 4 2aR) log (] " %ﬁa>
Also .
R . ) R |
Fomver = Load /ma? = T (l + 2 ;) log (l + 5%) (22)

The factor <1 + 2 I;) log <] —1—%%) should be divided into

7Zver 10 order to obtain %% or F. #Z... has been used hitherto in
constructing strain hardening curves or stress-strain curves. It is
F or %z which should properly be used for such curves, for this is
the flow stress at thc given strain under conditions such that the
other two principal components of stress vanish. ZZa.. 15 often
referred to as the “true stress.” In view ol the magnitude of the
correction factor, this now appears to be an unfortunate and con-
fusing nomenclature. It is always confusing to propose a revision
of accepted nomenclature, but it is sometimes necessary. I pro-
posc the following as perhaps leading to a minimum of confusion.
Call 725y the “uncorrected true stress'’ and F or 22, the ‘ corrected
true stress.”

By substituting the explicit expression for fi into equation (16)
it is possible by successive differentiations to obtain an explicit
expression for 4%zz/d8z% but therc scems no particular interest in
writing this out.

The procedure in the last step of the solution, from page 569 on,
was suggested by the method used by Siebel. The nature of the
approximations made by Siebel was such that it is difficult to esti-
matc the degree of approximation to be expected of his final solu-
tion. He solved the problem for two dimeunsions, in rectangular
co-ordinates x and z, the y co-ordinate running Lo infinity and nol
entering the solution, The Y, component of stress was set equal to
zero. Under these assumptions his solution was approximate
because he effectively set the h and h' of the analysis above equal
to each other, this discarding a finite tcrm, and he also effectively
set Zz = const for a first integration. The resuliant solution was
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finally applied to the cylindrical case merely by substituting r for x
in the formula and integrating around the circle, and without any
consideration of the effect of the stress component §6 which must of
necessity appear when passing to cylindrical co-ordinates. Siebel’s
final formula was:

- la
ZZaver = F (l + iR
Siebel's formula for the hydrostatic tension on the axis is a less

good approximation than his formula for Zzaver.

DISCUSSION

Written Discussion: By R. W. Mebs, associate physicist in metallurgy,
National Bureau of Standards, Washington, D. C. )

Experimental cvidence is far from convincing that the von Mises condition
holds true for states of triaxial tension. It would require only a small deviation
from von Mises assumption in order to cause an effective decrease in the flow
stress at the center of the specimen.

The assumption that hardening is constant all the way across the neck, inde-
pendent of hydrostatic tcnsion, appears to be untenable. Micro-cxamination of
polished specimens of fractured iensile bars, short distances removed from the
fractures, reveals a decrease in strain hardening as oue approaches the axis. The
longitudinal stress-gradient across the specimen thus is largely replaced by a
deformation gradient. The initiation of a “brittle”, or better, “separation”
fracture at the center of the specimen could be attributed, in part, to the smaller
strain hardening at that point, as well as to greater hydrostatic tension.*

Oral Discussion

M. GEnsaMmer:® This paper entered prominently into the cohesive strength
symposium discussion Tuesday afternoon and perhaps it might bc well to point
out why it came into that discussion. There is a possibility that it could be used
to help us in our understanding of what happens in notched bars. The elastic
solution for notched bars tells us that the stresses are greatest at the root of the
notch, that is, at the surface of the specimen. The plastic solution that Dr.
Bridgman has giveu us tells us that the situation is just the reverse of this. The
stresses are a maximum at the axis. When we test a notched bar, if it breaks
without any elastic deformation, the stress is greatest on the outside. If it
flows enough so that the deformation is uniform across the cross section as
Dr. Bridgman has assumed, then we have the maximum stresses on the center
line.

When the specimen deforms relatively little before it breaks so that the
elastic stress distribution is not changed too much, we should have a combina-
tion of the two states of affairs; and it may be, as Dr. McAdam has contended,

4D, J. McAdam, Jr. and R. W. Mebs, “An Tnvestigation of the Technical Cohesive
Strenpth of Metals,” American Institute of Mining and Metallurgical Engincers, Tech.
Pul. No. 1615, Metals Technology, Aug. 1943,

5Professor of metallurgical engineering, Carnegie Imstitute of Technology, Pittshurgh.
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that the stresses are not as nonuniformly distributed across the section of the
specimen as we might think; certainly not as nonuniiormly distributed as we
would guess from the elastic solution. There is a fair chance that Dr. McAdam’s
conclusions and arguments based upon a relatively uniform stress distribution
are not so bad.

I think Dr. Bridgman’s contribution will not only cnable us to correct stress-
strain curves hut it will help greatly in our understanding of the behavior of
notched bars, which is a practical problem.

Author’s Reply

The discussion of Mr. Mebs opens the question of the validity of various
approximations made in the solution. Tt must of course be recognized that
various approximations were made; the question is how good were these approxi-
mations, and whether it is better to apply the correction for nonuniformity of
stress deduced on the basis of the approximations or to neglect the correction.

With regard to the failure of the von Mises condition under triaxial stress
it is to be remarked that fortunately this question need not be considered because
the actual solution shows a biaxial stress (two of the principal components equal)
all the way across the section, and the von Mises condition is as applicable here as
it is in the situations [rom which it is derived.

With regard to the assumption that hydrostatic tension does not affect
hardening, numerical data were given in the body of the paper that indicate that
the effect must be small. It is difficult to know what quantitative weight to
attach to Mr. Mebs’ statement that micro-examination of fractured tensile bars
shows a decrease in strain hardening toward the axis, since no numerical values
were given nor was the method of measurement indicated, If the method was,
as may be suspected, a micro-hardness method then it is to he considered that the
parallelism is by no means close between hardncss and “strain hardening”, as
some unpublished cxperiments of my own show.

The most important deviations from exactness in our solution doubtless
arise from strain hardening. DBut strain hardening does not proceed at a rapid
enough rate to be a very important factor in my opinion. This may be
illustrated by a numecrical example, Consider a representative stecl which
fracturcs at a natural strain of unity, at which the ratio a/R also has approxi-
mately the value unity. TFor the tensile stress at fracture on the periphery of the
neck we take a representative value 225000 pounds per square inch. The
analysis of the paper shows that under these conditions the tensile stress on the
axis, derived on the assumption of uniform strain, is 1.4 times greater, or 315,000
psi. Let us now suppose that the stress is uniform all the way across, the
difference of stress between axis and periphery which would naturally arise from
the curvature of the contour being compensated by an enhanced stress at the
periphery due to greater strain there and the accompanying greater strain hard-
ening. The strain hardening at the periphery must be suflicient to raise the stress
from 225,000 to 315,000. Representative experimental values for the strain hard-
ening of this steel indicate an increase of flow stress of 90,000 p.s.i. for an increase
of strain of unity. This mcans that the natural strain at the periphery would
have to be greater by unity than that alt the center, or the elongation at the
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periphery 2.7 times greater than that at the center. If one were to make a rough
free-hand graphical construction of the lines of flow which might give rise to
this large difference of strain, I think it will be plain that any such difference of
strain between axis and periphery cammot be entertained. Although the math-
ematical problem has not been exactly solved I helieve that on the basis of
geometrical experimenis like this onc can conviuce onesclf that the approxi-
mation is not a bad one and that it is much better to apply the correction than to
neglect it.

With regard to notched bar experiments brought up hy Dr. Gensamer the
assumption of uniform strain is doubtless less applicable, but I believe that never-
theless the deviation of the stress from uniformity across the section at the notch
must be qualitatively like that found above for necked bars and quantitatively
probably exaggerated in comparison with values ordinarily attained in necked
specimens because of the very large value of a/R.  This it seems to me may have
an important bearing ou the interpretation of notched har experiments.




