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A Criterion for Ductile Fracture 
by the Growth of Holes 
From an available solution for the deformation of elliptical holes in a viscous material, a 
criterion is developed for fracture by the growth and coalescence of cylindrical holes under 
any prescribed history of applied principal components of stress and strain which do 
not rotate relative to the material. The criterion is extended to plastic materials by 
extrapolation from an analysis for the growth of circular holes under equiaxial trans-
verse stress. Experiments on Plasticine substantiate the analysis and its extrapolation. 
For both plastic and viscous flow, most of the applied strain to f racture is found to occur 
while the holes are still small compared with their spacing. The most striking result is 
that in plastic materials there is a very strong inverse dependence of fracture strain on 
hydrostatic tension. The theory also indicates the effects of anisotropy, strain-harden-
ing, and strain gradients on ductile fracture by the growth of holes. 

Introduction 
F R A C T U R E by the growth of holes has been observed 

in ductile metals by Tipper [ 1 ],1 Plateau, Henry, and Crussard 
[2], Puttick [3], Rogers [4], and Bluhm and Morrissey [5]. 
Rhines [6] has shown marked similarities between the growth of 
voids in Plasticine and those observed in copper by Puttick (see 
Fig. 1). Furthermore, using polystyrene spheres as "inclusions" 
in his Plasticine, he was able to develop and suppress "wolf's ear" 
fractures similar to those Backofen [7] found in copper under 
torsion followed by tension (see Fig. 2). Rhines found that very 
high inclusion densities were required for fracture in Plasticine, 
perhaps because the inclusions tended to adhere to the matrix. 
He also found that notch sensitivity and reduction of area were 
size-dependent. 

These similarities to fracture in metals suggest that where the 
inclusions are large enough to be observed under the microscope, 
fracture by the growth of holes can be considered to be primarily 
a problem in continuum mechanics. Recent studies of the 
mechanism of hole growth [S—10] have been largely empirical, 
have considered cases where the holes interact from the beginning, 
and have neglected triaxiality as a variable. As a complement to 
these studies, a more theoretical analysis seems in order. 

Representation of Criteria for Fracture by Hole Growth 
Before turning to detailed but still approximate calculations, 

it is worth examining the attributes which any criterion for duc-
tile fracture by the growth of holes must have. Criteria for 
initial yielding or for brittle fracture require only the current 
state of stress. In ductile fracture by the growth of holes, how-
ever, the changes in the size, shape, and spacing of the holes will 
depend on the entire history of stress, strain, and rotation. This 
added complexity is probably typical of ductile fracture in gen-
eral, and may be part of the reason for the current absence of duc-
tile fracture criteria. It is this absence which makes it worthwhile 
to study even the simple models which will be considered here. 

To simplify its representation, the history will be restricted to 
cases in which the principal components of stress do not rotate 
relative to the material, although they may vary in magnitude. 
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(b) in Plasticine, after Rhines [6] 

Fig. 1 Coalescence of holes 

In other words, we shall consider the normal and the delamination 
types of fracture shown in Fig. 3 from Bluhm and Morrissey [11], 
but not the incipient fracture in the shear band, which is dis-
cussed elsewhere [12]. Thus only the principal components of 
stress and strain need be considered. Since the holes turn out to 
be relatively small over most of the life of the specimen, the com-
ponents of applied stress and strain will be related by the usual 
stress-strain relations for an incompressible, fully plastic ma-
terial, reducing the number of independent variables to three. 
I propose the most symmetrical representation, which uses the 
fact that the sum of the three normal strain components is zero, 
so that the strain can be represented in triangular coordinates on 
a plane. The one independent component of stress may be taken 
to be the ratio of the mean normal stress to the equivalent flow 
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(a) in copper, after Backofen , et ai . [7] 

Fig. 3 G r o w i n g normal fracture and incipient delaminat ing and shear 
fractures in necked copper tensile spec imen, U. S. A r m y Materials Re-
search A g e n c y [ 1 1 ] 

(fo) in Plasticine, a f ter Rhines [6] 

Fig. 2 Wolf ' s ear fracture under tension a f ter torsion f o indicated s h e a r 

Fig. 5 Stress determined from strain increments and as soc ia ted Tresca 
f l o w rule around a hole with radial and a x i a l strain Fig. 6 Strain distribution around a hole under radial and a x i a l strain 

RADIUS RATIO, r/b 
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stress of the material. Such coordinates are shown in Fig. 4, along 
with the final shapes of an initially cubic element deformed along 
various radial paths. The Cartesian coordinates are labeled a, b, 
and z to correspond to the major, minor, and axial directions of 
elliptical holes to be considered below. 

For any given increment in principal strain, the corresponding 
components of stress can be determined from the stress-strain re-
lations. For the Mises yield criterion and associated flow rule, 
in terms of the mean normal stress, cr, and the equivalent stress 
and strain, a and cle: 

dti = 3(<ti — a)de/2<r 

or 0-1 / S = 0-/5- + 2de,/odi, (1) 

(Ti/a and cr8/cr similarly. 

For the maximum shear stress or Tresca yield criterion, the 
stress for a given strain increment may be found from a sketch 
of the yield locus. For convenience, define dei, dei, and de3 as the 
maximum, intermediate, and minimum principal strain incre-
ments, respectively. Then, except when de2 = 0, one is at the 
corners of the yield locus and from the associated flow rule, 

for de2 > 0 , a, — a3 = cr2 — tr3 = 2k, 
or (2) 

for de2 < 0 <ri — cr, = <Ti — <73 = 2k, 

where k is the yield strength in shear. 

From the stress differences and the mean normal stress, the 
principal components of stress can be found. For example: 

Cl = cr + (cri — cr, + <?i — cr3)/3. (3) 

Thus for each increment of a stress and strain path through the 
three-dimensional space of Fig. 4, all six principal components of 
applied stress and strain can be determined. These components, 
in turn, will determine the deformation of the holes, which 
eventually leads to fracture. 

A diagram such as Fig. 4 is also useful for other mechanisms 
of fracture under plastic flow. For example, it can be used to 
describe the path of an element in low-cycle fatigue under com-
plex stress-strain histories where the hysteresis loop is not a plane 
figure involving just one component of stress or one of strain. 

Analysis 
General assumptions. The material is assumed to contain three 

mutually perpendicular sets of cylindrical holes of elliptical cross-
section with axes parallel to the principal directions of the applied 
stress (and strain increment). One such family is shown in Fig. 4. 
Each hole is considered surrounded by a cylindrical cell whose 
dimensions are of the order of the mean spacing between the 
holes. It will be assumed that most of the applied strain occurs 
while the holes are still small enough so that their interactions 
with each other may be neglected. The mechanics problem then 
reduces to the generalized plane-strain deformation of a hole in 
an infinite medium. The hole may lengthen or shorten and will 
continue to have a more or less elliptical cross section. The con-
dition of fracture will be that the growth of the holes (calculated 
as if they were in an infinite medium) is such that each hole 
touches a pair of its cell walls. In other words, one of the semiaxes 
a or 6 of the hole approaches half the corresponding cell size (mean 
spacing), la/2 or lb/2, respectively. This condition may be de-
scribed in terms of a relative growth factor giving the increase in 
semiaxis of the hole relative to the corresponding hole spacing. 
For instance, for holes with a cylindrical axis in the z direction, 
growing in the b direction as shown in Fig. 4, the relative growth 
factor is defined as 

Fzi = ( W ) / ( W ) . ( 4 ) 

There are, in general, six possible modes of fracture; holes with a z 
axis in any one of the three directions can coalesce in either of two 

transverse directions. For instance, the relative hole growth 
factor at fracture due to z holes growing together in the b direction 

FJ = (1/2 ) / ( & W ) . (5) 

Because of prior mechanical history, the initial semiaxes and 
spacings may be different in different directions. Thus for the 
specimen as a whole, fracture occurs on the ij plane (holes parallel 
to the s,- axis coalesce in the j direction) when the ij growth factor 
is the first to reach its critical value for fracture: 

Fis = F^'. (6) 

For tests with a varying stress history, it is convenient to have 
a measure of damage which is additive and accumulates to unity 
at fracture. This is obtained by defining the damage as 

dVu = d(ln Ftj)/ln F,/. (7) 

Circular holes in a Mises material. Solutions for the growth of 
holes in a plastic material are in general known only for circular 
holes under axisymmetric applied stress and either plane stress or 
plane strain. The solution for generalized plane strain is de-
veloped here for a nonstrain-hardening material. In this plastic 
analysis the applied stress will be denoted by the subscript (<*>) 
(e.g., crra), to distinguish it from the local stress (cr,). Elsewhere 
in the paper the subscript will be dropped for simplicity. The 
radial stress for a given increment of hole growth is found by 
starting with the equilibrium equation, 

dar/dr + (ar - cre)/r = 0, (8) 

and expressing the stress difference in terms of the strain dif-
ference from the stress-strain relations, equation (1), 

dcrr/c>r = - ( 2 ? / 3 r ) {de ,/d i - deg/di). (9) 

The strain increments are found by integrating the strain-dis-
placement equations along with the condition of incompressibil-
ity, which yields the following equations for the distribution of 
radial and tangential strain increments in terms of the uniform 
axial strain increment, dez, and the strain increment degi at the 
inner radius, b: 

de, = -(b*/r*)(de$i + dej2) - dej2, 
(10) 

deg = {b-/rl){degb + deJ2) - dej2. 

Substitution of these equations and the definitions of equivalent 
stress and strain into the equilibrium equation (8), integration of 
the result, and solution for the circumferential strain increment at 
the surface of the hole gives the fractional increment in hole 
diameter: 

d ln (6/6°) = \ / 3 der„ sinh [ V 3 oWXcr™ - cr.-J] + dem. (11) 

Circular holes in a Tresca material. Here piecewise integration is 
needed for the different regimes of the yield locus of Fig. 5. For 
increases in the ratio of hole diameter to spacing, the circum-
ferential strain at the surface of the hole and the axial strain must 
be related so that 

d ln (b/l) = db/b - dl/l = deei + deJ2 > 0, 

or from incompressibility, 

degb > derl, (12) 

This limits the strain increments and stress to the right half of 
Fig. 5. The strain increments depend only on symmetry, in-
compressibility, and compatibility and are again given b}' equa-
tions (10) as shown in Fig. 6. From the associated Tresca flow 
rule, the states of stress must lie along the parts of the yield locus 
indicated in Fig. 5. For dez > 0, the tangential strain increment 
vanishes at the critical radius found from equations (10) to be 
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rc/b = v ' l + 2 deBb/dez. (13) 

At larger radii, the circumferential strain becomes negative, and 
the state of stress is confined to the vertex 0 of Fig. 5, so that 
ffg = cT. From the equilibrium equation, there will be no 
further change in radial stress. The applied stress a r „ is thus 
found by integrating equation (8) from b to rc with ffg — ar = 2k. 
The resulting equation is solved for the increment in radius of 
the hole. The hole growth for dez < 0 is found similarly: 

for dez > 0 (i.e., der„ < 0), 

din (6/6°) = — dera exp [ - 2 a r J ( a - r , 

for dez < 0 (i.e., rfera > 0), 

„)] + der, 

d In (6/6°) = —dera> exp [2<rra/(cra - <yza,)] + dem. 

R = (a + 6)/2, m = (o - 6)/(a + b). (15) 

For plane strain with constant applied stress in the principal 
directions <ra and ab (dropping the subscript <»), his equations 
(21) and (22a) give the change in size and shape of the holes in 
terms of the time t and the coefficient of viscosity n: 

In R/R" = (<ja + ab)l/4n, 

Vb 
+ <rb 

, ( o a« ~ " 'A + I vi — I exp 
\ "a + <TbJ 

(<T„ + <Tb)t 
2/j. 

(16) 

• (17) 

For comparison with plasticity, the time and viscosity can be ex-
pressed in terms of the equivalent strain by introducing the 
definition 

- 0 [(e„ - eby + (eb - e„.)2 + (ez 

I 1 / ! 
O ' l ] , 

where 

ea ~ 2 (<Tb + O i/3/x, (18) 

and similarly for eb and ez, giving 

t/n = 3e/o\ 

Solutions for generalized plane strain can be found for linearly 
viscous materials by superimposing a uniaxial stress parallel to 

(14) 

Comparison of equations (14) with equation (11) for the Mises 
material indicates a similar exponential dependence on radial 
stress for high values of transverse stress. For convenience, only 
the Mises material will be considered from here on. 

Elliptical holes on a v i scous material . T h e o n l y p l a s t i c s o l u t i o n f o r 
holes without circular symmetry is that of Drucker [13], who 
showed that, for plane-strain distortion of a cylindrical hole in a 
nonhardening plastic material, the strain should be confined to 
shear planes running from the hole either to a free surface or to a 
neighboring hole. This would lead to thin layers of highly 
strained material adjacent to unstrained material. Such a 
strain concentration would be diffused by a small amount of 
strain hardening. A better boundary condition would be to im-
pose uniform strain at large distances from the hole, but this 
solution is not known. Another possibility is a viscous solu-
tion, which allows the effects of strain history and the per-
manence of the deformation to appear, and diffuses the high 
strain concentrations. It has the disadvantage that the "hard-
ness" depends on the strain rate and not on the previous history 
of plastic straining. Nonetheless, the viscous and nonhardening 
materials seem to provide limiting cases between which the be-
havior of moderately strain-hardening materials is likely to lie 
[14]. We therefore turn to the viscous case, for which solutions 
exist. 

Berg [15] gave the change in shape of an elliptical hole in terms 
of the mean radius, R, and the eccentricity, m, defined in terms of 
the semimajor and semiminor axes a and b as 

the axis of the hole, which changes the size of the hole by the 
factor exp { — ez/2) but leaves the shape unaffected. Combina-
tion of these steps leads to expressions which will be put in terms 
of the transverse stress components and (ea + eb)/2 for later 
convenience: 

In R/R" = 3 e K + ab)/4:& + (ea + eb)/2, (19) 

a ° ~~ a>> , / „ ~ T 3 + m = K I — I exp 
c„ + <rb \ <ja + abJ L 2 a 

(20) 

Extrapolation to elliptical holes in a plastic material . P e n d i n g e x a c t 
solutions for elliptical holes in a plastic material, it is worth esti-
mating the behavior from that of the viscous material. For the 
special case of circular holes under axisymmetrical applied 
stress, direct solution of the equilibrium equation (8), the strain-
displacement equations (10), and the viscous stress-strain rela-
tion gives 

In 6/6° = 3er<rr/(ar - <r2) + er. (21) 

For the mean radius R, the expression for the viscous circular 
case is transformed into the elliptical one by the substitutions in 
the first term 

er e/2, (Tr (o-„ + <rb)/2, and (ar - <r2) a, 

and in the second term 

er — (ea + eb)/2. 

While the form used here for the plastic equation (11) suggests a 
similar substitution, the form was not immediately obvious, and 
a review of the conditions on the substitution is in order. If one 
substituted [{oa + <rb)/2] — az, rather than a, for aT — <rz, then 
an infinity would arise in the limiting case of plane strain, crt = 
(c„ + ub)/2. This infinity does not appear in the viscous case 
because er goes to zero as rapidlj' as ar — az in equation (21). 
With the hyperbolic sine of equation (11), however, these zeros 
are of different orders of magnitude. Likewise, the introduction 
of e/2 for er is suggested by the fact that, without it, under plane 
strain conditions (e0 = — eb), there would be no change in the 
mean radius no matter what the applied radial stress. The 
substitution of (e„ + eb)/2 rather than e/2 for er in the second 
term is made because, if e/2 were used, the resulting expression 
would not reduce to the viscous case for small values of the argu-
ment of the hyperbolic sine even for circular holes, as it must ac-
cording to equations (11) and (21). 

At the same time these changes are introduced, it is well to 
account for the possibility of strain hardening. McClintock and 
Rhee [14] have shown that in many cases this can be done ap-
proximately with the aid of the hardening coefficient, n, appearing 
in a = <71£~" or alternatively defined in terms of the stress at the 
point of maximum strain divided by the average stress over the 
stress-strain curve up to the maximum strain:2 

n = [((Tat max e)/(<ravB to max e)] — 1. (22) 

This strain-hardening coefficient ranges from zero for a nonhard-
ening material to unity for a linearly hardening material. In-
corporating this coefficient as an interpolator for the changes dis-
cussed above leads to the following expression for the mean radius 
of elliptical holes in a plastic material: 

In R/R0 = 
e V 3 

2(1 - n) 
sinh V 3 (1 - n) (aa + ab) + 6j + O 

(23) 

The eccentricity m might have a different steady-state value 

! Where the applied strain at infinity is relatively large, it appears 
better to take the average stress up to the maximum local equivalent 
strain starting from the applied equivalent strain rather than from 
zero. 
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and a different rate of approach to it. Tentatively, let the steady-
state rate be the same as for a viscous material, and let the argu-
ment of the exponential transform as does the first term from 
equation (19) to equation (23): 

+ L ° -a„ + ob \ a„ 

r v s exp -X exp (1 - n) 
sinh 

+ <yj 

V3 (1 - n) <ra + crb (24) 

Before applying equations (23) and (24) to ductile fracture, ex-
perimental evidence will be given for their validity. Plasticine 
was used instead of a metal to obtain the required large strains 
around the holes without local fracture and with little strain 
hardening. It also simplified the experimental procedure. A 
typical stress-strain curve is shown in Fig. 7. Application of 
equation (22) for an equivalent strain of 0.5 gives a strain-hard-
ening index of about 0.35. Hybels [16] ran experiments with 
equal biaxial tension using a bulge test, and East [17] ran ex-
periments on bending in plane strain and plane stress. The cor-

•- 15 

lb 
ui 10 

0.2 0.4 0.6 
EOUIVALENT STRAIN, 7 

Fig. 7 C o m p r e s s i v e s t ress-s t ra in c u r v e for P last ic ine 

EQUIVALENT STRAIN, e 

Fig . 8 G r o w t h of m e a n r a d i u s a s a funct ion of strain in P las t i c ine . 
Di f ferent s y m b o l s ind icate d i f f e rent s p e c i m e n s 

responding transverse and axial stress ratios in the three cases 
were, respectively, 1:1:0, 1.155:0.577:0, andl :0 :0 . The equiva-
lent strain was determined from gage marks initially six or more 
hole diameters apart. 

The results for the mean radius ratio are shown in Fig. 8, along 
with the theoretical predictions for various strain-hardening coef-
ficients n. The rate of hole growth predicted by equation (23) 
for plastic materials (re < 1) is not inconsistent with the data, and 
may even be exceeded for the uniaxial case, rra = <r, crb = 0. 

Similar results for eccentricity are shown in Fig. 9 for two or 
three specimens at each stress ratio. The theoretical steady-
state eccentricity is perhaps 25 percent low in one case and 10 
percent high in another. The rat e of approach to the steady-state 
value seems good in two cases and perhaps low by a factor of two 
in the third. Since there is no regular pattern and since ec-
centricity turns out to have a small effect in the fracture cri-
terion, it is sufficient to estimate its order of magnitude from 
equation (24), 

With this experimental evidence, we return to the analysis for 
the fracture criterion using equation (23) for the radius ratio and 
equation (24) for the eccentricity. 

Fracture criterion f o r constant stress rat ios . T h e r e l a t i v e h o l e 
growth factor F involves the semiaxis b of the hole, which can be 
obtained from equations (23) and (24) along with equations (15) 
defining R and TO, and the hole spacing lb as determined from 
the strain at infinity: 

lb = lb° exp eb. 

Hence 

Fj, = — 
R ( 1 - TO) 

R° (1 - w°) 
F,. 

R (1 + m) _t 
e ' R° ( 1 + TO0) 

(25) 

(26) 

As an example, the growth factor is plotted in Fig. 10 for a viscous 
material (n = 1) with initially round holes (to0 = 0) under ap-
plied stress components in the ratio 2 :1 :0 (encountered in plane-

0 0.5 1.0 
EQUIVALENT STRAIN, T 

Fig . 9 S h a p e c h a n g e s f o r h o l e s in P las t ic ine . Sol id l ine f r o m e q u a t i o n 
( 2 4 ) f o r n = 0 . 3 5 . Di f ferent s y m b o l s indicate d i f ferent s p e c i m e n s 
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F i g . 1 0 R e l a t i v e g r o w t h f ac tor s f o r v i s c o u s m a t e r i a l (n — 1 ) . S t ress 
rat ios (2 + TT):(1 + TT):7T a n d 2 : 1 : 0 , w i t h <r, the m i n i m u m pr inc ipa l 
s tress 

strain bending), and (2 + 7r):(l + 7r):7r (the maximum expected 
in a plane strain, doubly grooved, nonhardening tensile speci-
men), For most rapid growth, oa or <ib is the maximum principal 
stress, with <r, the minimum principal stress. Fig. 11 presents the 
corresponding information for a nonstrain-hardening material 
{n = 0). 

The most important observation from Figs. 10 and 11 is the 
very strong effect of triaxiality in reducing the fracture strain, 
especially in the nonhardening material. 

A second observation from Figs. 10 and 11 is that for "dirty" 
materials with low growth factors due to a close inclusion spac-
ing, there is a tendency for cracks to open on planes parallel, 
rather than normal, to the maximum component of applied 
stress, since F,a > Ftb. This tendency is strong enough at high 
triaxiality in nonhardening materials so that normal fracture 
does not occur for the range of growth factors considered here. 

A third observation from Figs. 10 and 11 is that the initial 
transient in damage rate, associated with the change in shape of 
the holes, dies out relatively quickly. This is expected because 
most of the contribution to the growth factor F must come from 
the radius ratio R/RP, when R/R° » 1, since the eccentricity is 
never more than unity. 

Fracture criterion f o r v a r y i n g stress ra t ios . I f t h e s t r e s s h i s t o r y is 
varying, transients will be repeatedly introduced and should be 
taken into account. While differential expressions can be ob-
tained, numerical integration is still necessary, so it is just as well 
to apply equations (23), (24), and (26) for short elements of the 
path over which the stress ratios are assumed constant. A com-
puter program in MAD language is available on request [18]. 

A p p r o x i m a t e f rac ture criterion. A c l o s e d - f o r m e x p r e s s i o n f o r a 
fracture criterion can be obtained by neglecting transient effects. 
From equation (26) for the growth factor, equation (23) for the 
radius ratio, and equation (18) for the stress-strain relation, com-
bined with equation (7) for the definition of damage: 

dru = 1 V3 s . n h / V 3 (1 - n) (g„ + <rt)\ 
di In Fa' l_2(l — n)Sm \ 2 a J 

+ 7 — 1 - (27) 4 cr J 

The resulting relation is shown in Fig. 12. For nonhardening 

.O 

4) W O 

01 o 
o < 

X H $ 
o Q: o 
UJ 
> 
i-< 
- j UJ 
oc 
0> O. o 

EOUIVALENT STRAIN, e 

Fig . 1 1 R e l a t i v e g r o w t h f a c t o r s f o r p la s t i c m a t e r i a l (n = 0 ) . S t ress 
rat ios (2 + i r ) : ( l + TT):T a n d 2 : 1 : 0 , w i t h <r, t h e m i n i m u m pr inc ipa l 
s t ress 

Fig . 1 2 S t e a d y - s t a t e d a m a g e rate f r o m e q u a t i o n ( 2 7 ) 

materials (ra = 0), the damage rate tends to depend on the average 
of the two transverse stresses, whereas for viscous materials it 
depends only on the stress normal to the fracture plane. 

An even simpler expression is desirable, and can be obtained 
from equation (27) by dropping the last term and expressing the 
equivalent stress as that found in plane tension: 

dru = sinh [(1 - n)(aa + ab)/(2c/V3 )] 
di (1 - n) In F.J ' ( ' 

To remember this equation, bear in mind that the damage rate 
varies as the hj'perbolic sine of the sum of the transverse com-
ponents of applied stress. The factor 1 — n appears in such a 
way that as the strain hardening exponent n goes to unity, the 
hyperbolic sine approaches its argument, and the factor (1 — n) 
cancels that in the denominator. At the same time the de-
pendence on transverse stress is much reduced. 

For constant ratios between components of applied stress, 
equation (28) can be integrated and combined with equation (5) 
to obtain the fracture strain required for z-axis holes, with initial 

DELAMINATION 

NORMAL FRACTURE 

3 6 8 / J U N E 1 9 6 8 Transactions of the A S M E 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/35/2/363/5449108/363_1.pdf by C
EA C

entre D
am

 ID
F user on 29 June 2023



spacing lb, to coalesce in the b direction: 

(1 - n) In (I'/2b") 

1 

V = 
sinh [(1 - n)(<r0 + ab)/(2&/^3 )]' (29) 

This expression is good to 15 percent at high triaxiality. At low 
triaxality it may differ from equation (27) by a factor of two if 
the transverse stress components are quite unequal. 

Discussion 
Principal results. The most important implication of equation 

(27) is the strong inverse dependence of fracture strain on trans-
verse stress. For example, consider a nonstrain-hardening ma-
terial with a typical volume fraction of inclusions (equal to the 
area fraction in a random metallographic section) of 10 - J to 
10~4. The relative hole growth factor is the reciprocal of the 
ratio 2b'/I", which for uniform spherical inclusions is of the order 
of the cube root of the void fraction, giving values of F' of 10 to 
20. In plane strain bending, Fig. 11 indicates a fracture strain of 
1.2 to 1.5. Under a triaxiality of a doubly grooved, plane strain 
tensile test, however, the fracture strain would be reduced to 0.05 
to 0.06! This low ductility under high triaxiality explains why 
it is so difficult to study the details of plane strain crack growth: 
the fully plastic stress and strain distributions are not likely to be 
attained before local fracture. On the other hand, for low values 
of transverse stress, the possibility of fracture, is governed by the 
requirements that the holes remain open and the steady state 
damage rate be positive. The second requirement can be found 
from the limiting form of equation (27) as the sum of the two 
transverse stress components goes to zero. The hyperbolic sine 
then approaches its argument, giving 

drjg = 

di = ln FJ 4 
3 <Ta 

a 
(30) 

Thus a tensile stress is required. The condition for holes to re-
main open requires that the eccentricity be less than unity, or, 
from equation (20), both transverse components of stress must be 
tensile. Thus from this analysis fracture by hole growth cannot 
quite occur in the tensile test before necking, in torsion (neglect-
ing the effects of rotation) or in uniaxial compression (open die 
forging). 

Note how difficult it would be to effect any great increase in 
ductility by increasing the purity. To raise the ductility in the 
doubly grooved plane-strain specimen by a factor of ten, to 
i ' = 0.50, would require a growth factor of 1010, corresponding to 
a void fraction of 10~'°, or one atomic vacancy in 100 tons of 
material! 

The strong interaction between triaxiality and strain hardening 
is shown by Fig. 12 or equation (28). Under the low triaxiality of 
plane strain bending, (aa + c r f c ) = \ /3 , increasing the strain-
hardening index from n = 0 to n = 0.3 increases the fracture 
strain by 20 percent. However, as n is increased from 0 to 0.3 
the fracture strain is increased by a factor of 2.8, for the high 
triaxiality expected in front of a crack, (<r„ + <Tb)/a = 5.36 [from 
the fully plastic solution with <r0 = (1 + 7r/2)(2<r/\/3), <rb = 
(1/2 + ir/2)(2o-/\/3)]. This effect, as well as the change in 
stress distribution itself, is no doubt an important contribution 
to the effect of strain hardening on fracture toughness reported 
by Krafft [19]. A quantitative prediction would require at least 
an approximation to the effect of strain hardening on the relation 
between fracture strain and stress intensity factor given by 

Fig. 1 3 Dependence of fracture strain on m e a n normal stress in a rolled s l a b . Anisotropic 
hole growth factors of Table I a s s u m e d 
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McClintock's equations (SO) and (62) [20]. 
The effect of size on fracture appears in the need for acquiring 

the critical strain over a region enclosing two or more inclusions. 
Thus of two geometrically similar notched specimens of the same 
material, the larger will fail at the lower applied strain. 

Application to a rolled slab. Consider the rolled slab sketched in 
Fig. 13, for which hypothetical growth factors at fracture are 
given in Table 1. Note that if the original casting was isotropic 

T a b l e 1 Hypothet ica l g r o w t h f a c t o r s at f rac ture , 
a s s u m e d f o r F ig . 1 1 

Hole axis — > L W 
Growth axis 

L — 60 
W 30 — 
T 20 40 

Fu> 

120 
SO 

R 

t , > 0 . 1 , 

= 2.93 { l - exp [ - ( « , - 0.1 ) /3 ] } ' 

<T J a = In (1 + a/2/?). 

IOOO 

4 0 0 

s o 
ce 

as regards fracture, and if the distortion of the inclusions during 
rolling was the same as that of the billet, the ductility would still 
be isotropic, since the ratio a/l would not change. Note also that 
for random, as opposed to layered configurations, the growth fac-
tors to fracture are not likely to differ too greatly for two dif-
ferent directions of growth from the same hole, since growth need 
not be confined to strictly orthogonal directions. 

The resulting fracture locus for a nonhardening material is 
shown in Fig. 13 for constant ratios of applied stress. For the 
lowest mean normal stress, a = a/3, the strain becomes infinity 
as one of the transverse stress components goes to zero, due to the 
closing of the holes. At this normal stress, all six mechanisms of 
fracture can occur, but at mean normal stress ratios of 2 and 3 
only three mechanisms can operate. Again, the most striking 
result is the very low fracture strain at these high normal stress 
ratios. 

Application to tensile tests. The necking in a tensile test requires 
that the effect of changing transverse stress can be taken into 
account. Bridgman [21] found that the ratio of section radius 
a to profile radius R is, 

ellipsoidal holes, but experience with other two versus three-
dimensional problems suggests that the difference would be small. 
For instance, for expansion of spherical and cylindrical holes in 
incompressible materials under pure triaxial tension, Hill [25] 
reports 

and 

0-/6" = [1 + In (E/V3 <r) ] /V3, 

a / a = [1 + ln(£/1.55-)]/1.5, (33) 

(31) 

If the strain is uniform across the neck, the radial stress is given 
by 

(32) 

Evaluation of equations (23) and (24) in short steps for this ten-
sile stress-strain history for different modes of fracture and strain-
hardening coefficients of n = 0 and n — 1, using the aforemen-
tioned computer program, yields the growth factors shown in 
Fig. 14. 

Tensile tests of a variety of materials by Ilenry [22] and 
Alpaugh [23] showed that, except for 1100-0 aluminum, the ten-
sile ductility was only a fraction of that expected for materials of 
reasonable purity (F< ~ 10). While Bluhm and Morrissey [5] 
have shown, as did Alpaugh, that fracture in the tensile test be-
gins by relatively homogeneous growth of holes from inclusions, 
their experiments as well as those of Rogers [4] show that the 
deformation becomes localized into thin shear bands, after which 
slight overall deformation is sufficient to cause fracture. Pending 
an investigation of this instability, one can only say that the 
homogeneous growth of holes provides an introduction to the in-
stability study and an upper limit to the ductility. 

Review of assumptions. The assumption that holes are initially 
present may be good for weak inclusions or interfaces. In other 
cases, strain hardening may be required to produce fracture in the 
more brittle phases of an alloy. Clausing [24] found both cases 
to be present in the same steel. 

The cylindrical holes assumed here might be replaced by 

respectively. 
Exact plasticity solutions for hole growth in a deforming 

medium have been obtained only for circular symmetry and 
equiaxial transverse stress. But even this ease illustrates the 
strong effect of triaxiality, which is the major result. At low 
triaxiality, the condition that the holes remain open makes the in-
termediate principal stress more important, and here more work 
is required, for the shape of the hole becomes important. When 
the holes close, further study is required, for although fracture 
under transverse pressure is not predicted by the theory, it does 
occur. 

While a viscous material does not fracture but rather "strings 
out," it is used here only to give an approximate relation for a 
linearly strain-hardening material, which does fracture. For in-
stance, in uniaxial tension, if da/dt = C, necking begins at a 
strain of unity. 

The rigid-plastic assumption becomes untenable at high tri-
axiality, for, as equation (33) indicates, the normal stress for frac-
ture under pure triaxial tension drops from the infinite value for a 
rigid material to 3 to 5 times the equivalent flow stress for E / a 
= 100 to 1000. 

Conclusions 
A quantitative fracture criterion has been developed for frac-

ture by the growth and coalescence of preexisting holes in plastic 
materials. For varying ratios of principal components of stress 
the fracture criterion is found by applying equations (23), (24), 
and (26) to successive short increments of strain, during any one 
of which the stress ratios are constant. An approximate ana-
lytical expression of the criterion is given by equation (28), or 
for constant stress history by equation (29). This criterion pro-

(NORMAL FRACTURE) 

(SPLITTING FRACTURE) 

0.5 1.0 1.5 

EQUIVALENT STRAIN, 7 

Fig. 1 4 R e l a t i v e g r o w t h f a c t o r in a tens i le lest 
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vides a useful contrast to the Griffith theory for the fracture of 
brittle materials under combined stress. Presumably, the be-
havior of materials with limited ductility, or in which nuoleation 
b y cracking of inclusions was controlling, would lie somewhat 
between these extreme theories. 

When expressed in terms of strain deviators, the graphical 
form of presentation of the hole growth criterion would be valid 
for any other mechanisms of fracture in which the principal com-
ponents of stress do not rotate, and also for yielding. 

The criterion for fracture by hole growth illustrates the fol low-
ing points: 

1 The very strong inverse dependence of fracture strain on 
tensile stress transverse to the holes. 

2 The relatively strong dependence of fracture strain on the 
transverse (intermediate) principal stress, rather than solely on 
the mean normal stress or the maximum principal stress. 

3 The dependence of ductile fracture on the history of stress 
and strain. 

4 The need for squaring the initial void fraction in order to 
double the fracture strain. 

5 The anisotropy of fracture which may arise out of an 
initially anisotropic shape and spacing of the holes. 

6 The increase in fracture strain to be expected f rom in-
creased strain hardening, judging f rom the viscous as compared 
to the ideally plastic results. 

7 A size effect in fracture, as indicated by the need for attain-
ing critical values of the strain and stress history over a region 
of the order of the hole spacing before fracture will occur. 

8 The fact that other mechanisms also contribute to ductile 
fracture in most cases, since the strains required for fracture of 
holes commonly observed in structural metals are rather smaller 
than found above, considering the low inclusion count and the 
presence of strain hardening. 

9 The need for studying the localization of flow within plastic, 
slightly porous materials. 
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